

PHYTOBIOMFS L L I A N C E

Kellye Eversole Executive Director, Alliance Syngenta Crop Protection Durham, North Carolina, USA 28 February 2017

From Simple to Complex – Phytobiomes and the 2050 **Vision for Agriculture**

Global challenges

ealing with America's deficit

How to feed the world

Arable land per caput (ha in use per person)

Declining Productivity

THE GLOBAL AGRICULTURAL PRODUCTIVITY (GAP) INDEX™

Source: Food Demand Index is from Global Harvest Initiative (GHI) (2015); Agricultural Output from TFP Growth is from USDA Economic Research Service (2015).

Crop Improvement Is Complex

- Increase yield
- Adapt to changing climate
- Achieve durable resistance to abiotic and biotic stresses
- Maintain consistent quality & yield
- Ensure sustainability
- Meet contextual situation

Simplicity to Complexity

Traditional Agricultural Sciences

- Isaac Newton nature is exceedingly simple
- Reductionism
- World is linear understanding parts individually
- Rely on partial knowledge genetics, soils, microbiomes, animals, environment
- Linear, deterministic assumption that genes are causes and organismic fitness is effect

Real World Situation

- Complex system, non-linear organization
- Governed by multiple nonlinear interactions and multiple environmental variables

We need a global approach to elucidate, quantify, model, and potentially reverse engineer biological processes & mechanisms for their geophysical context

Decipher Phytobiomes

Phytobiomes

Soils

Micro- and Macroorganisms

Viruses Archaea Bacteria Amoeba **Oomycetes** Algae Fungi Nematode

Crop plants, their environment, and their associated micro- and macro-organisms. **Plants**

Arthropods, Other **Animals and Plants**

Insects Arachnids Myriapods Worms Birds Rodents **Ruminants** Weeds

Associated organisms

"Phyto-" related to plants, crop plants

• "Biome" distinct geographical area, e.g., site specific, farm

Phytobiome ≠ "plant microbiome"

Phytobiomes ≠ "plant systems"

"Phytobiome"?

production of food, feed, and fiber on a given farm.

Holy Grail of Phytobiomics

To understand, predict, and control emergent phenotypes for sustainable

How?

The International Alliance for Phytobiomes Research

An international, nonprofit Alliance of industry, academic, and governmental partners

MONSANTO

Science For A Better Life

Who We Are

All farmers have the ability to use predictive and prescriptive analytics to animals....).

Vision

- choose the best combination of crop/variety, management practices, and
- inputs for a specific field in a given year taking into consideration all physical
- (climate, soil...) and biological conditions (microbes, pests, disease, weeds,

Strategy and implementation

- gaps (e.g., model development)
- Focus on pre-competitive science
- Facilitate linkages within and between industry and academia
- Coordinate projects to address gaps
- connecting site specific biological and physical information for agriculture

Industry leadership in identifying research, resource, and technology

Empower industry growth and profitability in the phytobiomes space –

Understanding and Predicting

- Develop, validate, and optimize accurate models that include all physical & biological components and their interactions
- Enable simple, simulation models that are functionally accurate to real world complex conditions - e.g., greenhouse studies that reflect field conditions
- Design systems level predictive and prescriptive analytics for on-farm implementation
- Create databases of near real-time environmental and biological data

Alliance Priorities

- A whole genome sequence database for microbes that includes geospatial data
- Accessible, curated strain repository for all agriculturally relevant microbes with back-up at ARS genetic resources preservation labs
- Multidisciplinary phytobiomes research coordination networks
- Standards development sampling, storage, reference communities, reference datasets for analytical tool development
- Research linking site-specific and temporal physical & biological data for crops, forests, and grasslands
- Science to support the regulations that may exist for agricultural biologicals, including biopesticides and permitting

Ag Data – physical & biological

- Standards
- Regulatory
- **Climate/Weather** •

Working Groups

How to become involved

Scientific Coordinating Committee

Alliance sponsors

Project leaders

 \checkmark

Alliance working groups

✓ Overall topical leader

 Involved in projects aimed at filling gaps in knowledge, resources, or tools

Omics-enabling technologies \bullet

- high-throughput sequencing
- computational biology & modeling
- Systems-level methods

Advances in computational science •

- Quantum computing
- Machine learning
- Analytics
- Predictive analytics
- **Precision Agriculture** •
 - Variable rate seeding & input
 - UASs
 - Soil & weather sensors

Why Now?

а 355 at 15 kts 1010.7 hPa (mb) Wind Sea-level pressure* Temperature(C Visibil Weather Rain showe moderate or heavy Pressure trend (hPa or mb) Falling, then steady or Sky cover* Dew Point(C) falling more slowly 7/8 (okta) 0.6 hPa lower

www.linkedin.com/pulse/foreign-affairs-precision-agriculture-revolution-ulrich-adam

Adapted from NOAA/NWS/NCEP

Agricultural Biologicals

2016-2022 CAGR = 12.76%

Market equals \$11.35 Billion in 2022

Source: Markets and Markets, 2017

Growing Agricultural Investments

The Growing Pace of **Global Investment in Agriculture**

In 2006-2010, new funds raised an average of \$1.24 billion a year to invest in agriculture. The same figure more than doubled for 2011-2015 to \$3.08 billion a year.

Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Follow @GroIntel www.gro-intelligence.com

Now is the time to

Join Us!

Board of Directors:

Gwyn Beattie, Iowa State University

Kellye Eversole, Eversole Associates

Magalie Guilhabert, Bayer CropScience

Jan Leach, Colorado State University

Science For A Better Life

THE SAMUEL ROBERTS FOUNDATION

MONSANTO

Acknowledgements

Staff: Chief Operating Officer – Lori Leach **Communications – Isabelle Caugant**

THE CLIMATE CORPORATION

For More Information: <u>www.phytobiomesalliance.org</u> Kellye Eversole eversole@eversoleassociates.com

the second courses where

