Penn State Microbiome Center Presents

Imtiaz Ahmad

Postdoctoral Research Associate Department of Entomology, Penn State University, PA, USA. <u>ixa12@psu.edu</u>

Mighty microbes: The tri-trophic interactions of endophytic *Metarhizium* in maize.

United States Department of Agriculture National Institute of Food and Agriculture

Acknowledgements

- USDA Organic
 - **Research and**
 - **Extension Initiative.**
- USDA Organic
 - Transitions.
- Northeast-IPM.
- Penn State

Microbiome Center.

Project team

- Mary Barbercheck
- Imtiaz Ahmad
- Maria Jimenez-Gasco
- Jason Kaye
- Barbara Padro
- Dawn Luthe
- Brianna Flonc
- Puneet Randhawa
- Christina Voortman
- Dayton Spackman
- Scott Harkcom
- Many lab assistants

Plants, microbes and beyond!

Microbes are mighty!

In 1 teaspoon of soil there are...

≽Bacteria	100 million to 1 billion
Fungi	6-9 ft fungal strands put end to end
Protozoa	Several thousand flagellates & amoeba One to several hundred ciliates
Nematodes	10 to 20 bacterial feeders and a few fungal feeders
Arthropods	Up to 100
Earthworms	5 or more

Multi-trophic communications

López-Ráez, Juan A. et al. Trends in Plant Science, Volume 22, Issue 6, 527 - 537

<u>Metarhizium</u>

Hypocreales: Clavicipitaceae

Insect pathogens

Plant colonizer

Broad host range

Life cycle of Metarhizium

Ortiz-Urquiza, A. et al. (2015). Improving mycoinsecticides for insect biological control. Applied microbiology and biotechnology, 99(3), 1057-1068.

Metarhizium: A multifunctional fungus

Behie, S. W et al., (2017). Nature communications, 8, 14245. Behie, S. W et al., (2012). Science, 336(6088), 1576-1577. Liao et al., 2017. Microbiology 163: 980-991.

Phytohormone-mediated plant defense

JA: chewing insects, necrotrophic and symbiotic fungi. Growth-defense switch.

SA: Biotrophic phytopathogens and phloem-feeding insects.

Pangesti et al. 2013. Frontiers Pl. Sci. doi: 10.3389/fpls.2013.00414

Fine-tuning of plant growth and defense

Objectives

- Ability of *M. robertsii* to form endophytic relationship with maize.
- Effects of endophytic *M. robertsii* on maize growth.
- Effects of endophytic *M. robertsii* on growth of Black Cutworm (BCW).
- Effects of endophytic *M. robertsii* on expression of key plant defense genes.

Plant species affect prevalence of *M. robertsii*

 Detection greatest in maize phase of feed grain rotation.

 Effects on maize growth and defense gene expression, and growth of BCW?

Maize colonization by M. robertsii

Height is correlated with tissue colonization

Biomass is correlated with root colonization

Jasmonic acid biosynthesis pathway

JA and SA response pathways

Plant-derived chitinases

RGR of BCW is correlated with colonization

Summary

- M. robertsii recovered from 91% of treated maize plants. Systemic recovery.
- Endophytic had greater plant height, above-ground biomass and modulated defense gene expression.

- Relative growth rate of black cutworm was lower on leaves from endophytic plants.
- Results support model of integrated response vs. trade-off between plant growth and defense.

Thanks for your attention!