

Microbial Communities in the phyllosphere Pathogen Detection and the role of during fungal infection of wheat

Yiheng Hu

PhD candidate

International Plant & Animal Genome XXVIII Congress, 15/01/2020 Research School of Biology, The Australian National University

ntroduction

- Fungal diseases are responsible for major losses in crop production, especially wheat.
- Microbial communities influences disease outcomes at infection sites.

- Can we detect fungal pathogens and associated microbiomes through a metagenomics approach?
- A proof-of-concept study
- How can we improve the species classification?
- Benchmarking taxonomic classification strategies using mock communities.

Detection of fungal wheat pathogen from field samples

Sampling wheat leaves with

confirmed phenotypes

pathogen genomes **BLAST wheat &** nucleotide database **BLAST NCBI** Visualization & Trimming Quality control

Data analysis

Porechop

Two-step BLAST search

matpletlib

- Blind DNA extraction
- Portable MinION sequencer

Detection of fungal wheat pathogen from field samples

Microbiome profiles are pathogen specific

- We can detect fungal wheat pathogen from field samples using nanopore metagenomics shotgun sequencing.
- Microbiome profiles are pathogen specific.

Benchmarking taxonomic classification strategies

2 mock fungal communities: pooled DNA & pooled tissues

Metagenomics shotgun sequencing (Nanopore)

- 2 algorithms: K-mer (Kraken2) & Alignment (BLASTn)
- 2 databases: nt & Refseq fungi

- **Recall rate:** % of identified reads
- Success rate: % of identified reads that belongs to the mock community

for classification Alignment + specific database is the 'best approach'

Choice of database affect the result more than the choice of algorithms.

blastn against Refseq_fungi result in the highest species level success rate.

Applying cut-offs on alignment proportion improves classification

Genera completeness

= # of genera identified belongs to the mock total # of genera in the mock

Alignment proportion = $\frac{\text{\# of identical matches}}{\text{Read length}}$

 Cut-offs on alignment proportion works the best compare to e-value, read length, read quality and percentage of identity.

Optimizing community composition analysis

- Create a 'gold standard' classification and community compositions:
- Using pairwise alignment algorithms (minimap2)
- Using database with only genomes from the species in the mock community, to maximize the success rate (100%)
- Compare other broadly applicable classifications to the 'gold standard' to optimize the community composition analysis

using 'gold standard' composition Benchmarking community composition analysis

- Constructed reference database with only genomes in the mock.
- standard' classification and composition. Using pairwise alignment (minimap2) to construct the 'gold
- Compare different strategies with 'gold standard' for similarities.
- Apply cut-offs on alignment proportion and access the similarities' change

Candida rugosa	
Size (Mb)	13.9
Contig number	15
N/L50 (Mb)	2/3.2
BUSCO	92.3%
Candida mesorugosa	gosa
Size (Mb)	16.6
Contig number	13
N/L50 (Mb)	2/3.6
BUSCO	91.6%
Cryptococcus magnus	gnus
Size (Mb)	26.6
Contig number	188
N/L50 (Mb)	12/0.8
виѕсо	87.6%

Comparing community composition analysis using Bhattacharyya (B) distance

B distance (angle °): A measurement of absolute distance between two lists of probabilities

gold standard community composition. Blastn against Refseq_fungi database has the closest B distance with the

Bhattacharyya (B) distance Comparing community composition analysis using

B distance (angle °): A measurement of absolute distance between two lists of probabilities

Running hypothesis:

 No need to restrict the dataset for better community composition analysis.

pathogens and associated microbiomes during infection Next step: tracing the quantitative abundance of fungal

Hypothesis:

quantity of microbial communities. The pathogen development is associated with the

Experimental design:

- Sampling of wheat disease trial four times per growing season for three years
- Quantifying the abundance of major pathogen species and their associated microbiomes

Collaboration Welcome!

Take-home messages

- We can detect fungal pathogens and describe their associated microbiomes through a metagenomics approach.
- Database affects classification more than the classification algorithms, and alignment + specific database is the best approach.
- Applying cut-offs on alignment proportions can further improve the classification.

Acknowledgements

Supervisors:

John Rathjen Benjamin Schwessinger Eric Stone

NSW Department of

Primary Industry:

Andrew Milgate Michael McCaig Tony Goldthorpe

The University of Sydney:

Wieland Meyer Laszlo Irinyi

The Rathjen Lab
The Schwessinger lab

Thank you for listening!