Genome-based Taxonomy to Improve the Regulation of Biological Control Organisms

Long Tian¹, Reza Mazloom², Lenwood S. Heath² and Boris A. Vinatzer¹

(1) School of Plant and Environmental Sciences, Virginia Tech

(2) Department of Computer Science, Virginia Tech

Acknowledgements

- Haitham El Marakeby
- Alex Weisberg
- Caroline L. Monteil

- Kellye Eversole
- Gwyn Beattie
- Caitilyn Allen

- Mohammad Arif
- Titus C. Brown
- Leighton Pritchard

USDA APHIS

COI

Life Identification Number[®] and LIN[®] are registered trademarks of This Genomic Life, Inc. Lenwood S. Heath and Boris A. Vinatzer report in accordance with Virginia Tech policies and procedures and their ethical obligation as researchers, that they have a financial interest in the company This Genomic Life, Inc., that may be affected by this presentation. They have disclosed those interests fully to Virginia Tech, and they have in place an approved plan for managing any potential conflicts arising from this relationship.

Outline

- What is taxonomy really all about?
- The importance of taxonomy for the regulation of plant pathogens and biological control organisms
- The promise of genome-based taxonomy
- The LINbase web server and how it can provide precise classification and identification (as long as phenotypic data/metadata exist)
- Genome-based risk assessment:
 - based on genome phylogeny
 - based on the presence of known/predicted pathogenicity genes

Taxonomy

- The basic "what" definition of taxonomy: the science of naming, describing, and classifying organisms.
- The "why" definition of taxonomy: the science of assigning individual organisms to named groups in a way that being identified as a member of one named group <u>predicts</u> an organism's <u>characteristics</u> that distinguish the organism from all organisms that are not members of that group.
- <u>A good example</u>: assigning all bacteria that cause the disease anthrax to the named group *Bacillus anthracis* allows us to predict that an unknown bacterium assigned to that group also causes anthrax but an organism assigned to a different group does not cause anthrax.
- <u>A bad example</u>: assigning bacteria that cause different diseases or no disease at all to one group of organisms that share some characteristics that nobody cares about and call that group *Escherichia coli*.

The "*Escherichia coli* problem" is a result of today's polyphasic taxonomy and the operational species concept

Today's polyphasic taxonomy – the operational species concept

ANI: Average Nucleotide Identity

Species and regulatory agencies

• Regulators rely on named species, for example, see the select agent list:

USDA PLANT PROTECTION AND QUARANTINE (PPQ) SELECT AGENTS AND TOXINS

- 61. Coniothyrium glycines (formerly Phoma glycinicola and Pyrenochaeta glycines)
- 62. Peronosclerospora philippinensis (Peronosclerospora sacchari)
- 63. Ralstonia solanacearum
- 64. Rathayibacter toxicus
- 65. Sclerophthora rayssiae
- 66. Synchytrium endobioticum
- 67. Xanthomonas oryzae

The challenge with plant-beneficial bacteria

- Plant-beneficial bacteria are sometimes closely related to plant pathogens and even to human pathogens, for example, bacteria in the genera *Burkholderia* and *Bacillus*.
- This is a problem, in particular, when trying to register and commercialize biological control agents.
- Today's genera and species are not precise enough to develop regulations that reflect risk.
- We need <u>named groups</u> with <u>distinct phenotypes</u> that we care about because they affect human, animal, and plant health.
- Careful **phenotyping** is necessary to do this!

The Life Identification Number® (LIN®) concept

What are LINs?

- Stable and unique codes that are:
 - assigned to individual organisms (for example, bacterial isolates)
 - based on a measure of genome similarity, such as average nucleotide identity (ANI)
 - informative of the similarity of an organism's genome to the genomes of all other organisms.
- Codes consist of a series of positions, each expressing a different threshold of genome similarity.
- The more similar the genomes of two organisms are, the more similar the LINs of the two organisms are.
- Importantly: instead of a single species threshold of 95% ANI, LINs have many ANI thresholds to circumscribe groups of many different breadths!

Similarity thresholds

- LINs are assigned sequentially starting with any one genome in one database.
- "0" is used as a symbol, not as a value.

<mark>A</mark> 70%

B 80%

C 90%

D 95%

E 96%

A 70% B 80% C 90% D 95% E 96%

ANI thresholds used in current LIN implementation

within-species thresholds!

- LINs are informative of precisely how similar genomes are to each other.
- LINs are indices that automatically organize individual genomes in a database based on reciprocal similarity (<u>expanding hierarchical taxonomy from the</u> <u>species all the way to the individual</u>).

but how can LINs be used to describe groups of organisms that need to be regulated?

and how can LINs be used to precisely identify unknown organisms as members of groups (that have phenotypes we care about)?

LINgroups:

<u>any</u> group of related organisms (that share the same LIN over a number of positions)

LINgroup concept

* Type strain

Vinatzer et al 2017

LINs and LINgroups have been implemented in: LINbase, a crowdsourcing web server

linbase.org

Find everything about microorganisms The Life Identification Number® (LIN®) Platform

Access Without Registration

Quick Start Guide

https://www.biorxiv.org/content/10.1101/752212v2

GGAAAACTCTGGTGCAGTTCGGTATGGCGCAAAGCACCCGTCCACAAACCGGTGCCGGACAATTGTTATCATTGTTTCTGCGTCGTGG

		Home	Upload	Search 🔻	Identify	About us	Sign out
--	--	------	--------	----------	----------	----------	----------

LINbase will be ready for use in later 2018. E-mail vinatzer@vt.edu if you want to be a test user and/or help populate LINbase with genome sequences and LINgroup descriptions. Significant contributors to LINbase will be considered for co-authorship on our manuscript describing LINbase.

R	Upload	Search 🔻	Identify
Boris Vinatzer	Submissions		
@vinatzer	No genome submitted.		
vinatzer@vt.edu Virginia Tech	Recent activities Job Title	Job Name	Status
Edit	Untitled Gene Identification	ident_gene	success
	Untitled LINgroup Search	search_lingroup	success

Describing a LINgroup

Genomes

50 genome(s) found.

Α	В	С	D	Е	F	G	н	Т	J	κ	L	Μ	Ν	0	Ρ	Q	R S T Genus Species Intra/infra class
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ralstonia solanacearum phylotype II sequevar 1 UW551
0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	Ralstonia solanacearum phylotype II sequevar 1 CFIA906
0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	Ralstonia solanacearum phylotype II GEO_304
0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	Ralstonia solanacearum phylotype II sequevar 1 NCPPB 909
0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	Ralstonia solanacearum phylotype II sequevar 1 GEO 99
0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	Ralstonia solanacearum phylotype II sequevar 1 UW365
0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	1	Ralstonia solanacearum None UW551
0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	2	0	Ralstonia solanacearum phylotype II sequevar 1 GEO 57

A user can select the conserved LIN positions for strains that are cool-virulent ...

0	0	0	-	G 0	Н 0	0	J	К	L	М	Ν	0	Ρ	Q	R	S	Т	-
0	0	0		0	0	0	0											
					Non	-taxo	nom	ic gro	oup								-	
						this	na	me i	is n	ot t	hat	imp	ort	ant	n+if	ior		
on					This and	grou	ip in ely re	clude	s the	e pan ains t	dem hat n	ic rac nay, c	ce 3 l or ma	oiova ay not	r 2 st :, be	rain cold		Only as good as the phenotyping
					http	s://a	osjou	irnals	aps.	net.c	org/d	oi/10.	.1094	l/PH	′TO-'	12-14	4-(
jes.								the i	nfor	mati	on e	nter	ed b	efor	e sul	omit	ting	
	on oubl es.	on ouble-cl es.	on ouble-chec	on ouble-check th es.	on ouble-check the co es.	Non- preli	Non-taxe prelimina this bec on This grou and close adapted, https://ap ouble-check the correctnes es.	Non-taxonom preliminary ra this nat becaus on This group ind and closely re adapted, such https://apsjou	Non-taxonomic gra preliminary race 3 this name because th because th Don This group include and closely related adapted, such as 0 https://apsjournals ouble-check the correctness of the i es.	Non-taxonomic group preliminary race 3 biow this name is no because the Li on This group includes the and closely related strate adapted, such as CFBF https://apsjournals.aps ouble-check the correctness of the informers.	Non-taxonomic group preliminary race 3 biovar 2 or this name is not the because the LIN is on This group includes the pane and closely related strains the adapted, such as CFBP3855 https://apsjournals.apsnet.com ouble-check the correctness of the information es.	Non-taxonomic group preliminary race 3 biovar 2 circum this name is not that because the LIN is the on This group includes the pandeminand closely related strains that in adapted, such as CFBP3858 and https://apsjournals.apsnet.org/de ouble-check the correctness of the information enderse.	Non-taxonomic group preliminary race 3 biovar 2 circumsor this name is not that imp because the LIN is the state on This group includes the pandemic race and closely related strains that may, or adapted, such as CFBP3858 and 23- https://apsjournals.apsnet.org/doi/10 ouble-check the correctness of the information enter es.	Non-taxonomic group preliminary race 3 biovar 2 circumscription this name is not that importation because the LIN is the stable on This group includes the pandemic race 3 If and closely related strains that may, or matical adapted, such as CFBP3858 and 23-10BF https://apsjournals.apsnet.org/doi/10.1094 ouble-check the correctness of the information entered by es.	Non-taxonomic group preliminary race 3 biovar 2 circumscription this name is not that important because the LIN is the stable ide on This group includes the pandemic race 3 bioval and closely related strains that may, or may not adapted, such as CFBP3858 and 23-10BR. See https://apsjournals.apsnet.org/doi/10.1094/PHY ouble-check the correctness of the information entered before es.	Non-taxonomic group preliminary race 3 biovar 2 circumscription this name is not that important because the LIN is the stable identif on This group includes the pandemic race 3 biovar 2 st and closely related strains that may, or may not, be adapted, such as CFBP3858 and 23-10BR. See the https://apsjournals.apsnet.org/doi/10.1094/PHYTO- ouble-check the correctness of the information entered before sules.	Non-taxonomic group preliminary race 3 biovar 2 circumscription this name is not that important because the LIN is the stable identifier on This group includes the pandemic race 3 biovar 2 strain and closely related strains that may, or may not, be cold adapted, such as CFBP3858 and 23-10BR. See the URL https://apsjournals.apsnet.org/doi/10.1094/PHYTO-12-14 ouble-check the correctness of the information entered before submit es.	Non-taxonomic group Image: Construction of this name is not that important because the LIN is the stable identifier on This group includes the pandemic race 3 biovar 2 strain and closely related strains that may, or may not, be coldadapted, such as CFBP3858 and 23-10BR. See the URL https://apsjournals.apsnet.org/doi/10.1094/PHYTO-12-14-(ouble-check the correctness of the information entered before submitting es.

and possibly the URL of a relevant publication ...

Identifying an unknown using a genome sequence

Identify strains

Reference database updates at 12:00 AM EST every Monday

Job title * optional	
Enter a descriptive title for your identification job.	
Untitled Gene/Genome Identification	
dentification method • required	
Choose which algorithm you would like use to identify your strains.	
Identify using a genome sequence	\$
Identify using a genome sequence Sequence to be identified * required Enter your FASTA sequence(s) - OR - O Upload a FASTA file	Ť
Sequence to be identified * required	Ť
Sequence to be identified * required Enter your FASTA sequence(s) - OR - O Upload a FASTA file	Ť
Sequence to be identified * required Enter your FASTA sequence(s) - OR - O Upload a FASTA file	Ť
Sequence to be identified * required • Enter your FASTA sequence(s) - OR - O Upload a FASTA file	Ť

Next time a LINbase user queries LINbase with the genome of an unknown isolate

В	Best match FastANI: 100.000% Most															lost similar bacterial genome based on FastANI											
Α	в	С	D	Е	F	G	н	Т	J	К	L	М	Ν	ο	Ρ	Q	R	S	т	Genus	Species	Int	Strain	Тур.			
14	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	4	0	Ralstonia	solanacearum	None	UW551	N/A			
Та	Taxon/LINgroup membership Described LINgroup(s) which the query belongs to															; to											
Α	В	С	D	Е	F	G	н	Ι	J	Κ	L	Μ	Ν	0	Ρ	Q	R	S	т	T Type Description							
14	1	0																	genus Ralstonia								

The user may get the search result that the unknown isolate <u>is a member</u> of the newly described LINgroup. ... NCBI does not give membership; MiGA and GTDB do, but only to the species rank.

phylotype

II (validly published ...

Non-taxonomic group preliminary race 3 b...

LINbase is in beta testing but the goal is to ...

- provide immediate, unique identifiers to communicate about yet un-named and un-characterized organisms, such as emerging pathogens.
- make it very easy and very fast to identify any organism based on its genome sequence alone as a member of named groups that have distinctive phenotypes.
- offer a genome-based classification and identification platform to federal agencies to precisely regulate plant pathogens and biological control organisms independently of the 95% ANI threshold of named species (or to protect IP).
- requires metadata and phenotypic data!

Genome-based risk assessment

- 1. Risk based on genome similarity/relatedness to known pathogens of humans, animals, and plants
- 2. Risk based on the presence of virulence genes

Risk based on genome similarity (using LINs)

high

low

- The organism belongs to a LINgroup that is associated with disease (all characterized members of the group cause disease).
- The organism belongs to a LINgroup that is not known to be associated with disease but is closely related to a LINgroup that is associated with disease.
- The organism belongs to a LINgroup that has been shown not to cause disease but the LINgroup is closely related to a LINgroup which members cause disease.
- The organism belongs to a LINgroup which members have been shown not to cause disease and the group is not closely related to any LINgroup which members cause disease.

Risk based on virulence gene content

high

- The organism contains close homologs of pathogenicity or virulence genes typical of human/animal/plant pathogens
- The organisms contains distant homologs of virulence or pathogenicity genes
- The organism contains some genes sometimes associated with virulence or fragments of such genes
- The organism does not contain any genes known to be associated with virulence in any pathogen

low

In practice, a future version of LINbase could ...

- Assign a LIN to a potential biological control organism
- Determine exactly to which LINgroups of non-pathogenic or pathogenic organisms it belongs to and/or how closely related it is to pathogenic or non-pathogenic LINgroups
- Compute a genome similarity-based risk score
- Determine the presence of potential virulence genes
- Compute a virulence gene-based risk score
- Compute a <u>combined genome-based risk score</u>

What we need to get there ...

- Circumscribe most species in LINbase (can be automated)
- Enter in LINbase circumscriptions of clades, phylogroups, phylotypes, serogroups, serotypes, pathotypes based on peer-reviewed literature ... (a lot of work by many experts ...)
- Thorough <u>characterization</u> of species that include both pathogenic as well as non-pathogenic members to circumscribe them as <u>separate</u> groups
- Integrate virulence gene content analysis
- Develop a framework to compute a combined phylogeny and gene-based risk score

Group Discussion

- What are the biggest regulatory hurdles you face today?
- Do you use genome sequencing to characterize biological control organisms?
- What are your needs in regard to genome analysis?
- How do you currently perform risk assessment?