Fine Tuning Nitrogen Recommendations across the U.S. Cotton Belt: A Multi-Faceted Approach

DR. HUNTER FRAME, VA TECH

DR. RYAN STEWART, VA TECH

DR. KATIE LEWIS, TEXAS A&M

DR. GLENN HARRIS, UNIVERSITY OF GEORGIA

D.R TYSON RAPER, UNIVERSITY OF TENNESSEE

10/22/2020

Why do we need to <u>RE-evaluate</u> cotton nitrogen use?

- 2017- 373,409 metric tons of nitrogen (N) were applied to cotton
- o43% nitrogen use efficiency (NUE) in cotton (Bronson, 2008)
 - >200,000 metric tons of N were lost to the environment that year
- How do we use the 4R's of nutrient management to increase NUE in cotton production
- ODo the N recommendations for each cotton growing state change and are they up to date?

Current State Recommendations for Nitrogen in Cotton

State	Extension Nitrogen Recommendations
Alabama	$101 \pm 34 \text{ kg N ha}^{-1}$ in split application for all soils
Florida	67 kg N ha ⁻¹ in split applications
Georgia	67 to 118 kg N ha ⁻¹ in split applications based on realistic yield goals of 842 to 1,684 kg lint ha ⁻¹ .
Mississippi:	56 to 67 kg N bale ⁻¹ on "light-textured soils"; 67-78 kg N bale ⁻¹ on "medium textured soils"; split applications if over 112 kg N ha ⁻¹ applied.
North Carolina	56 to 78 kg N ha ⁻¹ in split applications
South Carolina	$78 \pm 34 \text{ kg N ha}^{-1}$ in split applications
Virginia	Yield goal based: 56 kg N per bale of expected yield (Available soil N will contribute 22-34 kg N ha ⁻¹)
Tennessee	34 to 67 kg N ha ⁻¹ on bottom soils; 67 to 90 kg N ha ⁻¹ on upland soils
Texas	50 kg N bale ⁻¹

IPNI. 4R Diagram. 4R Nutrient Stewardship Portal. International Plant Nutrition Institute. June 2009. http://www.ipni.net/4r

2019 Proposal to 4R Fund for Updating Cotton N Requirements

- 1. Quantify the agronomic response to varying N rates and placement strategies of contemporary cotton varieties adapted to major production regions.
 - 4 locations from 2019 2021
- 2. Determine the impact of EEF's on N transformations and NUE in cotton production systems. More specifically:
- a. Measure gaseous losses of N species and other greenhouse gases from common N fertilizers, and leaching losses of N applied at varying N application rates and placements with and without enhanced efficiency N fertilizer additives or products
 - VA and TX using Gasmet 4040 to monitor gas flux from 2019-2022
- b. Quantify the effectiveness of current N stabilizers and slow/controlled release N products on N transformations/species in representative soil types from the U.S. Cotton Belt using controlled laboratory environments.
 - A horizon soils from each N placement x application rate trials are sent to Dr. Frame's laboratory for ammonia volatilization
- 3. Measure the impact of various cover crops and cropping rotations on N cycling and availability in different regional production systems, and evaluate the responsiveness of cotton to applied N at those locations.
 - 4 locations from 2019 2022
- 4. Develop a comprehensive management guide that informs regional management practices, thus reducing off target movement of N and maximizing the NUE of cotton systems.

Trial Locations from 2019-2023

Nitrogen Placement and Application Rate Trials

Nitrogen placement determines nutrient acquisition by roots and potential losses to the environment

Applied at six rates: 0, 45, 90, 135, 180, and 225 kg N ha⁻¹

How does cotton respond to different placement methods across US Cotton Belt?

How does the optimal N rate change based on placement method?

Three Year Nitrogen Rate/Placement Study in Virginia/North Carolina (2016 – 2018)

Join point not shown
Optimal N Rate: >180 kg N ha⁻¹
Max Relative Yield: 94%
≈1,600 kg ha⁻¹

Optimal N Rate: 128 kg N ha⁻¹
Max Relative Yield: 90%
≈1,550 kg ha⁻¹

Optimal N Rate: 133 kg N ha⁻¹
Max Relative Yield: 95%
≈1,610 kg ha⁻¹

2019 Nitrogen Application and Placement Study Virginia Location

Enhanced Efficiency Fertilizer Studies

- Virginia was the only location in 2019 in order to solidify sampling protocols for future years of the study
 - Static green house gas chambers did not work
 - No consistent flux due to time from sampling to analysis and variability in crimping of vials
 - Gasmet provided a quick, consistent sampling of GHG emissions
 - o Methane, nitrous oxide, ammonia, carbon dioxide simultaneously measured

Ammonia Volatilization in Laboratory Trials

(Fine Sandy Loam from Virginia)

Nitrogen Placement

Enhanced Efficiency Formulations

Two Year Average Cotton Yields Following Different Cover Crops 2017-2018

Expected Outcomes for N Management in Cotton

- Optimize the N application rates in each production region of the US Cotton Belt.
 - o 134 kg N ha⁻¹ in Southeast?
 - o 67 kg N ha⁻¹ in Mid-South?
 - Do early, mid-, and late maturing varieties respond differently to N placement and rate?
- ODevelop N management strategies that maximize NUE across the different regions of the US Cotton Belt
 - Using EEF's versus placement in VA or TN??
- Ohow can we incorporate legume cover crops in the different regions to reduce the need for inorganic cotton fertilizers?
 - o In Virginia there is promising evidence that 0 kg N ha⁻¹ behind crimson clover and hairy vetch can achieve the same lint yields as 134 kg N ha⁻¹ following cereal rye.
- ODevelopment of a comprehensive guide to N management in cotton for the US Cotton Belt.

Thank You! Questions?

FOUNDATION FOR AGRONOMIC RESEARCH

Dr. Hunter Frame

6321 Holland Rd, Suffolk, VA 23437

Office: (757) 807-6539 Cell: (757) 653-8292

Email: whframe@vt.edu

