

Managing pest outbreaks through participatory iterative ecological forecasting

Chris Jones, Shannon Jones, Anna Petrasova, Vashek Petras, Devon Gaydos, Megan Skrip, Ben Seliger, Chelsey Walden-Schreiner, Yu Takeuchi, Ross Meentemeyer

Invasive Pests and Pathogens are Increasing Globally

Based on data from Seebens, Hanno, et al. Nature communications 8 (2017): 14435.

*Each box represents ~500 new introduced species

Iterative Forecasting Improves Forecasts Steadily Over Time

Iterative Forecasting in Ecology:

We believe iterative ecological forecasting can help us improve our ability to model pest and pathogen spread.

Iterative Forecasting Improves Forecasts Steadily Over Time

Iterative Forecasting in Ecology:

We believe iterative ecological forecasting can help us improve our ability to model pest and pathogen spread.

Iterative Forecasting in Weather:

PoPS Forecasting Platform

Open-Source Model

- Modular
- Spatially explicit
- Dynamic

PoPS Forecasting Platform

Database and Storage

- Forecasts
- All calibrated parameters and uncertainty
- Weather coefficient
- Host data

Spotted Lanternfly in Pennsylvania:

An example of iterative forecasting improvements

- Discovered in Berks County, PA in 2014
- Over 90 counties quarantined across 11 states
- *\$13+ Billion* in crops and forest at risk
- Has spread to New Jersey, Delaware, Virginia, New York, Virginia, West Virginia, Ohio, Connecticut, Indiana, Rhode Island, Massachusetts, Vermont, and Maryland.

PoPS Forecasting Platform

Updating Parameters Based On New Data

Iteratively updating parameters improves forecast accuracy

PoPS Forecasting Platform Spatial Decision Support

Improved Understanding of Temperature Influence

Improved Understanding of Temperature Influence

Improved Understanding of Temperature Influence Increases Accuracy

Adding New Model Features Based on Field Observations

Adding New Model Features Based on Field Observations

							Without Large Population Movements	With Large Population Movements
		(c)	CONFL FOR VALI	ISION MAT	RIX STICS	Accuracy ((TP+TN)/T))	85.5% (2.1)	85.8% (2.0)
			Positive (PP)	Negative (PN)		Precision (TP/PP)	81.7% (3.8)	81.8% (3.7)
E CONTRACT			True Positive (TP)	False Negatives (FN)	Observed Positives (OP=TP+FN)	Recall/sensitivity (TP/OP)	91.0% (1.9)	91.1% (1.8)
		OBSE Negative	False Positives (FP)	True Negatives (TN)	Observed Negatives (ON=FP+TN)	Specificity	80.7% (5.1)	80.8% (5.0)
2 To star	Prove 1		Modeled Positives (MP=TP+FP)	Modeled Negatives (MN=FN+TN)	TOTALS (T = MP+MN = OP+ON)	Odds ratio		
			((((TP+TN)/(FP+FN))	43.25 (.98)	43.26 (.97)
64								

PoPS Forecasting Platform Field Operations

а

Location Target

rbcL gene

TSWV

P. infestans rbcL TSWV

NC

P. infestans

Forecasting SOD Spread Spatial Decision Support

Forecasting SLF Spread Spatial Decision Support

30 APHIS personnel from science and technology, field operations, policy, and regulatory working groups on June 26, 2019

PoPS

PoPS (Pest or Pathogen Spread) is a C++ library for a stochastic spread model of pests and pathogens in forest and agricultural landscapes.

Performs a single time step of spread.

r.pops.spread

GRASS GIS

wrapper that iteratively cycles

through a series of time steps of

Parallelized GRASS GIS-

the **PoPS** C++ model.

Main functions:

- generate
- disperse
- mortality
- remove

grass-tangible-lanscape TANGI

Couples a physical Tangible Landscape model with **r.pops.spread** so that a user can physically add management and interact with the landscape.

TANGIBLE LANDSCAPE

Allows users to place physical management and run scenarios of PoPS.

Pops Dashboard Interface

Allows web users to draw management and run various scenarios of PoPS.

Managing pest outbreaks through participatory iterative ecological forecasting

Chris Jones, Shannon Jones, Anna Petrasova, Vashek Petras, Devon Gaydos, Megan Skrip, Ben Seliger, Chelsey Walden-Schreiner, Yu Takeuchi, Ross Meentemeyer

Geospatial Analytics **NC STATE** UNIVERSITY Twitter: @ChrisJonesPhD Email: <u>cmjone25@ncsu.edu</u> Website: popsmodel.org

