

School of Life Sciences University of Dundee MAPPING BARLEY GENES SHAPING THE RHIZOSPHERE BACTERIAL MICROBIOTA

Carmen Escudero-Martinez PhD

Davide Bulgarelli Lab

PAGXXIX: Exploring Phytobiomes workshop

12th of January 2022

Plant Sciences

c.m.z.escuderomartinez@dundee.ac.uk

@CarmenEscudero @Teamdb_lab

- Access to soil-bound nutrients
- Pathogen protection
- Stress tolerance
- Enhancement of plant development and growth

Berendsen *et al.,*Stringlis *et al.,*Zhang *et al.,*Yu *et al.,*

Plant-microbiota interactions from natural ecosystems to future agricultural scenarios

Barley as a model to study crop-microbiota interactions

- Global Crop: world 4th most cultivated cereal
- Large germplasm collections: Accessions, mutants, wild relatives
- Diploid genome
- Pan-genome
- Gene editing
- Speed breeding

Rhizosphere microbiota diversifies between wild and elite barley

Constrained Principal Coordinate Analysis

Constrained PCoA 1 (52.21 %)

Can we map barley genes associated with rhizosphere bacteria?

NAM HEB-25: a useful resource in barley genetics

Maurer et al. (2015) BMC Genomics

- Multi-parent Nested Association Mapping (NAM)
- 25 Wild barley genotypes x Barke
- Family 15:HID144 wild parent crossed with the elite cultivar Barke
- Microbial composition/abundance as phenotype in mapping to identify the genetic region(s) responsible for the plant host microbiota recruitment

Is the NAM population suitable?

dundee.ac.uk

Wild and elite parents host contrasting bacterial microbiotas

dundee.ac.uk

Genetic map of the barley determinants of the rhizosphere bacterial microbiota

Escudero-Martinez, Coulter, et al. submitted

dundee.ac.uk

Map position defined with R/qtl using 'scanone' the mean abundance of the depicted bacterial as 'phenotypes' and the Illumina iSelect 9K markers, Expectation-maximization (EM) algorithm, LODs supported by marker regression or genome-wide significance threshold are presented

Generating sibling lines with "wild" and "elite" alleles at the QRMC-3HS locus

	Genotype	3H locus type	Maker identity with Elite (%)
	Elite parent	Elite	100
	124_52	Wild-like	93.3
	124_17	Elite-like	95.5
	Wild parent	Wild	60.3

Sibling lines with "wild" alleles at the QRMC-3HS locus shift the microbiota composition

Escudero-Martinez, Coulter, et al. submitted

Can we use roots RNA-seq to identify candidate genes underpinning microbiota recruitment?

Raw RNA-Seq (~100M, 2x150bp PE reads/rep)

RNA-seq confirms differentially expressed genes (DEGs) between the sibling lines and elite roots tissue

Escudero-Martinez, Coulter, et al. submitted

***** 34 DEGs comparing line 124-52 (wild *QRMC-3HS* locus) to lines 124_17 and the elite

dundee.ac.uk

Differentially expressed genes displaying a P value < 0.01 (edgeR, FDR corrected)

Root DEGs mapping at the QRMC-3HS locus

Escudero-Martinez, Coulter, et al. submitted

Differentially expressed genes displaying a P value < 0.01 (edgeR, FDR corrected)

A non-syntenic region at the QRMC-3HS locus

- Microbiota composition is a quantitative and genetically tractable trait in barley
- We have located and validated a major regulator of this trait on chromosome 3H
- RNA-seq on the root of the sibling lines identified candidate genes for the microbiota composition phenotype
- Only the resistant gene falls in a dissimilar region across the barley pangenome

Escudero-Martinez, Coulter, et al. 2021 BioRxiv

Acknowledgments:

Dr Davide Bulgarelli **Prof Robbie Waugh** Dr Geoff Barton Dr James Abbot Dr Max Coulter Dr Rodrigo Alegria Dr Senga Robertson-Albertyn Dr Mauro Maver (U Bolzano-Italy) Dr Laura Pietrangelo Aileen Corral

Dr Klaus Pillen (U Halle-Germany) Dr Andreas Maurer (U Halle-Germany) Dr Rajiv Sharma (SRUC Edinburgh) Dr Alexandre Foito **Prof Andrew Flavell** Dr Pete Hedley Dr Jenny Morris

Max

Senga

Escudero-Martinez, Coulter, et al., (2021), BioRxiv

cmz.escuderomartinez@dundee.ac.uk @CarmenEscudero @Teamdb lab

Rumana

Aileen

Thank you for your attention!