ASSESSING SOIL HEALTH AT SCALE AND INCORPORATING MEASURES OF THE MICROBIOME
SOIL HEALTH:

The capacity of a soil to function as a vital, living ecosystem that sustains plants, animals, and humans.
Outline

• Choosing soil health indicators

• Interpreting soil health indicators

• Incorporating measures of the microbiome in soil health
NORTH AMERICAN PROJECT TO EVALUATE SOIL HEALTH MEASUREMENTS TEAM

Dr. Cristine Morgan Dr. Kelsey Greub
Dr. Dianna Bagnall Dr. Dan Liptzin
Dr. Michael Cope Dr. Liz Rieke
Ms. Janeva Williams Dr. Mac Bean
Dr. Paul Tracy Dr. Charlotte Norris
GOAL: Identify most effective indicators of soil health

APPROACH: Evaluate soil health indicators on long-term agricultural research sites

124 long term experimental sites

Over 30 Measurements that indicate soil health
Measures of Soil Health

<table>
<thead>
<tr>
<th>CARBON</th>
<th>NITROGEN</th>
<th>WATER/STRUCTURE</th>
<th>COMMUNITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Organic Carbon</td>
<td>Total N</td>
<td>Plant Available Water</td>
<td>16S Amplicon Sequencing</td>
</tr>
<tr>
<td>Active Carbon (POXc)</td>
<td>Autoclaved Citrate Extractable Protein - ACE</td>
<td>Saturated Hydraulic Conductivity</td>
<td>ITS Amplicon Sequencing</td>
</tr>
<tr>
<td>Potentially Mineralizable C (24 & 96 hr CO₂-C)</td>
<td>Potentially Mineralizable N - Anaerobic</td>
<td>Porosity/Bulk Density</td>
<td>Shotgun Function Metagenomics</td>
</tr>
<tr>
<td>B-glucosidase</td>
<td>N-acetyl B-glucosamidase</td>
<td>Soil Stability Index</td>
<td>Phospholipid Fatty Acid - PLFA</td>
</tr>
<tr>
<td>Microbial Biomass C</td>
<td>H3A Extractable N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Measurement Criteria

- Primarily indicate soil health
 - Not inherent properties
 - Not fertility measurements
- Responsive to soil health management practices
 - Reduced tillage
 - Cover crops
 - Organic amendments
 - Residue retention
- Applicable for measurement at scale
 - Cost effective
 - Available commercially
- Non-redundant
 - Provide information on different ecosystem services
Measurement Selection

- **Soil organic carbon**
 - Major component of soil organic matter
 - Measure using dry combustion

- **24-hr Potential carbon mineralization**
 - “Respiration”
 - Microbial response to soil rewetting
 - Related to microbial biomass
Measurement Selection

• **Aggregate stability**
 • Linked to reduced erosion, increased infiltration
 • Fraction of aggregates remaining after exposed to wetting and/or mechanical disturbances
Measurement Selection

- Plant available water
 - Measure directly on intact cores or model using pedotransfer function
 - Model inputs include soil texture and soil organic carbon

Carbon-sensitive pedotransfer functions for plant available water

Dianna Kathleen Bagnall, Cristine L.S. Morgan, Michael Cope, Gregory M. Bean, Shannon Cappellazzi, Kelsey Greub, Daniel Liptzin, Charlotte L. Norris, Elizabeth Rieke, Paul Tracy… See all authors

First published: 23 February 2022 | https://doi.org/10.1002/saj2.20395

Assigned to Associate Editor Ryan D. Stewart
This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as https://doi.org/10.1002/saj2.20395
Conclusion

• Numerous soil health indicator options

• Most Responsive to Management

• Not all available at commercial laboratories

• Remove redundant measures to maximize knowledge
Rationale

Soil Health Interpretation at the Farm Level
SOIL HEALTH TARGETS TEAM

SHI 2021 Interns
Brent Thomas
Quanteria Randle
Robert Thomas

SHI Staff
Dr. Cristine Morgan
Dr. Nate Looker
Dr. Dianna Bagnall
Dr. Jason Ackerson
Dr. Vance Almquist
The Need for Quantifying Potential Soil Health Improvements

Rationale

Soil organic carbon stock
(metric tons OC acre$^{-1}$, 0-15 cm)

Treatment
- Conventional till + fallow
Rationale

The Need for Quantifying Potential Soil Health Improvements

0.5±0.2 metric tons OC acre$^{-1}$

Soil organic carbon stock
(metric tons OC acre$^{-1}$, 0-15 cm)

Treatment
- Conventional till + fallow
- No-till + multispecies cover
- No-till + rye cover
The Need for Quantifying Potential Soil Health Improvements: Effects of Long-Term Adoption/Innovation

Target?

Soil organic carbon stock
(metric tons OC acre$^{-1}$, 0-15 cm)

Treatment
- Conventional till + fallow
- No-till + multispecies cover
- No-till + rye cover
The Need for Quantifying Potential Soil Health Improvements: Effects of Site Characteristics

SOIL HEALTH INSTITUTE

Rationale

Treatment
- Conventional till + fallow
- No-till + multispecies cover
- No-till + rye cover
- Bahiagrass-peanut-cotton
- Peanut-cotton-cotton

Soil organic carbon stock
(metric tons OC acre$^{-1}$, 0-15 cm)
Approach

Soil Health Targets Concept

Interpretable: Targets represent soil health achievable under optimal management (minimal disturbance, continuous living cover, ...)

Scalable: Targets can be quantified even in locations where long-term soil health management systems are absent

Locally relevant: Targets are defined for groups of soils with similar site characteristics relevant to soil health (inherent soil properties, topography, and climate)
Soil Health Groups

• Framework for site selection and reporting results
• Preliminary version implemented summer 2021
• Derived using publicly available data:
 • USDA-NRCS Soil Survey
 • Gridded climate products
 • Topographic attributes
• Soils are grouped according to inherent factors including:
 • Mineralogy
 • Texture
 • Drainage
Soil Health Groups

Soil map units

Soil health groups
Soil Health Targets for Cotton-Producing Soils

Arkansas Delta
Blackland Prairie
Coastal Bend

39 row crop fields and 52 targets
Targets: Soil Health under Optimal Management
Proof-of-Concept

Potential Improvements in Carbon Storage across Soils and Regions
Conclusion

• Multiple indicators provide complementary insights on potential improvements in soil functioning
• Soil health groups capture trends in soil health potential across soils and regions
• Reference sites give fuller picture of soil health potential for soils lacking examples of long-term SHMS adoption
Microbiome Measurements & Soil Health

1) Enhance interpretation of common soil health measurements

2) Use as a stand alone measure
 • Specific organisms
 • Functional characteristics
Bacterial & Archaeal Community Composition by Moisture Measurements
Drivers of Microbial Diversity
Goal

• Link changes in soil microbial community structure from tillage to potential carbon mineralization across North America

• Objectives:
 • Define tillage influence on community structure
 • Identify community members enriched under no-till systems across climates and soil types
 • Identify organisms influential in Cmin measurements
• 11 of 14 sites had significantly different (p<0.01) community structures due to tillage

• 3 non-significant sites were wheat-based rotations
 • Sites represented different climates and soil properties
Community Structure: Minimum vs. Intense Tillage

- **717 ASVs** were enriched under minimum tillage
- **Representing:**
 - 16% of microbes in intense tillage
 - 33% of microbes in minimum tillage
Modeling Carbon Mineralization

- Average sequence importance averaged over 30 model runs
Modeling Carbon Mineralization

- Proteobacteria contributed the most
- 44% of sequences of model ASVs enriched under minimum tillage
Modeling Carbon Mineralization

- Proteobacteria contributed the most
- 44% of sequences of model ASVs enriched under minimum tillage
Results- *Acidobacteria Subdivision 6*

- Enriched under no-till and important in predicting Cmin
- *Acidobacteria* present in wide range of soils
- Slow growing
- Adaptive to low nutrient concentrations
- Produces uncharacterized extracellular polymeric substances

Huber et al. 2016
Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

Elizabeth L. Rieke a, Shannon B. Cappellazzi a, Michael Cope a, Daniel Liptzin a, G. Mac Bean a, Kelsey L.H. Greub a, Charlotte E. Norris a, Paul W. Tracy a, Ezra Aberle b, Amanda Ashworth c, Oscar Bañuelos Tavarez d, Andy I. Bary e, R.L. Baumhardt f, Alberto Borbón Gracia g, Daniel C. Brainard h, Jameson R. Brennan i, Dolores Briones Reyes g, Darren Bruhl j ... C. Wayne Honeycutt a
Acknowledgements

Contact: erieke@soilhealthinstitute.org

E Aberle
O Bañuelos Tavarez
A Bary
R Baumhardt
A Borbon Gracia
D Brainard
D Briones Reyes
D Bruhjell
K Cammack
C Carlyle
J Crawford
C Creech
S Culman
B Deen
C Dell
J Derner
T Ducey
S Duiker
R Dungan
M Dyck
B Ellert
M Entz
A Espinosa Solorio
S Fonte
S Fonteyne
A Fortuna
J Foster
A Franzluebbers
L Fultz
A Gamble
C Geddes
J Grove
S Hamilton
X Hao
Z Hayden
J Heitman
J Howe
J Ipollito
G Johnson
M Kautz
N Kitchen
S Kumar
K Kurtz
F Larney
K Lewis
M Liebig
M Liebman
A Lopez Ramirez
S Machado
B Maharjan
M Martínez Gamiño
W May
M McClaran
M McDaniel
N Millar
J Mitchell
P Moore
D Mora Gutierrez
K Nelson
E Omondi
S Osborne
D Osmond
L Osorio Alcalá
J Paulk
E Pena-Yewtukhiw
H Poffenbarger
B Ponce Lira
J Reeve
T Reinbott
M Reiter
E Ritchey
K Roozeboom
A Sadeghpour
U Sainju
G Sanford
W Schillinger
B Schindelbeck
M Schipanski
A Schlegel
K Scow
L Sherrod
A Shober
E Solis Moya
M St. Luce
J Strock
A Suyker
V Sykes
H Tao
M Thompson
A Trujillo Campos
L Van Eerd
N Verhulst
T Vyn
D Watts
D Wright
T Zhang

The Samuel Roberts Noble Foundation
General Mills
Foundation for Food and Agriculture Research
ACKNOWLEDGMENTS

Landowners & operators
NRCS in Texas & Arkansas
Texas A&M University & Texas A&M AgriLife Extension
Prairie View A&M University
University of Arkansas at Pine Bluff
Dr. Michael Young, UT Austin
Arkansas Game & Fish Commission
University of Arkansas System Division of Agriculture

This work is supported by the generosity of the Walmart Foundation.
Thank You for your Attention

www.soilhealthinstitute.org

erieke@soilhealthinstitute.org