Phytobiomes Alliance, July 6th 2023

Selectively Changing the Microbiome of the Rhizosphere

Karsten Zengler

www.zenglerlab.com

Disclosures

"...CONFLICT OF INTEREST?"

Disclosures

Co-founder **Isolation Bio** (San Carlos), developing high-throughput platform for **microbiome research**.

Co-founder **Native Microbials** (San Diego), developing microbial solutions for your **animals**.

Co-founder and SAB member **Allive Biosciences** (San Diego), improving health by **reducing inflammation**.

SAB member **DiscitisDX** (La Jolla), developing diagnostics for intervertebral **disc surgery**.

SAB member **Triton Algae Innovations** (San Diego), introducing new ingredients for **future foods**.

Consultant **Procter&Gamble** (St. Louis), consumer skin care.

Former SAB member

Joyn Bio (Boston) ProdermIQ (San Diego) ProdermIQ Syngip (Vaals, The Netherlands) Syngip

Discitisdx, Inc

ALGAE INNOVATIONS

Microbiome Sciences

Progress in Microbiome Research

UC San Diego

Progress in Microbiome Research

Why? ...are they doing it?

How?

What? ...are they doing?

Progress in Microbiome Research

Why? ...are they doing it?

How?

What? ...are they doing?

Who else lives there? Transplant organisms? Build/create?

Predict?

Open Questions in Microbiome Research

Terrestrial

Aquatic

...how do communities response to perturbations?

Open Questions in Microbiome Research

Terrestrial

Aquatic

<image>

...how do communities response to perturbations?

...can we predict outcomes?

Open Questions in Microbiome Research

Terrestrial

Control – Change – Rational Design

...how do communities response to perturbations?

...can we predict outcomes?

Processes in the Rhizosphere

How do we study microbial communities?

Microbiome Science Tools

Microbiome science is mostly descriptive & correlation-based

www.simplypsychology.org/correlation.html

Microbiome science is mostly descriptive & correlation-based

...often NOT predictive

Microbiome science is mostly descriptive & correlation-based

...establish causation and make it predictive!

UC San Diego

Al-Bassam et al. Nature Communication 2018

UC San Diego

Al-Bassam et al. Nature Communication 2018

Translatomics – Ribo-Seq

Translational Efficiency (TE)

The cell controls its phenotype through translational efficiency (resource allocation)

Al-Bassam et al. Nature Communication 2018

Resource allocation defines a person's preferences

TE in Communities

Control – Change – Rational Design

Method Validation

Synthetic Community (SynCom)

16 strains

Isolated from switchgrass rhizosphere

Taxon	Strain
Lysobacter	OAE881
Burkholderia	OAS925
Variovorax	OAS795
Chitinophaga	OAE865
Chitinophagaceae	OAS944
Mucilaginibacter	OAE612
Rhizobium	OAE497
Bradyrhizobium	OAE829

Taxon	Strain
Bosea	OAE506
Methylobacterium	OAE515
Arthrobacter	OAP107
Mycobacterium	OAE908
Rhodococcus	OAS809
Marmoricola	OAE513
Brevibacillus	OAP136
Paenibacillus	OAE614

Experimental Design

Comparison of -omics

> Excellent reproducibility within –omics

Distinct profiles between -omics

Guilds and Microbial Niche Determination (MiND)

Guilds

16 strains, 275 metabolic pathways (KEGG) Average 4 replicates

Guilds vs Phylogeny

Guilds vs Phylogeny

UC San Diego

Pathway Prioritization: SynCom vs. Axenic Culture

Burkholderia - SynCom Burkholderia - isolate Chitinophaga - SynCom Chitinophaga - isolate Lysobacter - SynCom Lysobacter - isolate Niastella - SynCom Niastella - isolate Variovorax - SynCom Variovorax - isolate Color Key and Histogram 400 0.2 Scaled TE

Can guilds predict intervention outcomes?

Modifying community composition

REMOVAL

Calculating Competition Score

+2 0 Brevibacillus * Arthrobacter * Lysobacter Niastella 🔵 * Burkholderia Variovorax Rhodococcus * Bradyrhizobium 🧶 Rhizobium 🔵 Bosea Chitinophaga Paenibacillus Bosea Brevibacillus Niastella Burkholderia Variovorax Rhodococcus Bradyrhizobium Rhizobium Methylobacterium Chitinophaga Paenibacillus Arthrobacter Lysobacter Mucilaginibacter

UC San Diego

2

Hypothesis

Bacteria in the Same Guild are Competitors

Antimicrobials

- Beta-Lactam resistance
- Multidrug resistance transporter
- Multidrug resistance efflux pump
- Rax Type 1 secretion system
- RTX toxin transport system
- Antimicrobial peptide resistance

Antimicrobials

Antimicrobials

Arthrobacter Brevibacillus Lysobacter Burkholderia Chitinophagaceae Rhodococcus Variovorax Bradyrhizobium Rhizobium Methylobacterium Bosea Chitinophaga Mucilaginibacter Paenibacillus

E= Chitinophaga B С Α 2 mm 2 mm 2 mm J .E E 2 mm • 2 mm 2 mm 2 mm -K Μ 2 mm 2 mm 2 mm S R Ð -2 mm 2 mm - Cont

ADDITION

Modifying community composition

ADDITION

PROBIOTIC INTERVENTION

Burkholderia/ Rhizobium

Burkholderia/ Rhizobium

Burkholderia/ Rhizobium

Mucilaginibacter/ Chitinophaga

SynCom

PROBIOTIC INTERVENTION

Modifying community composition

Modifying community composition

Adding metabolites

PREBIOTIC INTERVENTION

Adding metabolites

PREBIOTIC INTERVENTION

PREBIOTIC INTERVENTION

Importer Proteins

88 in metaG data

3. Experimental validation: Prebiotic interventions

h

10⁶

Burkholderia

3.10⁵ -

2.10⁵

1.105-

Paenibacillus

0.05

0.05

Ribose (g/L)

ò

0.5

0.5

2. Microbial guilds - Predict competition

3. Experimental validation: Prebiotic interventions 10^{7} Burkholderia 3.105 -2.10⁵ - 10^{6} L.10⁵ 10⁵ 0.05 0.5 0 10^{4} Paenibacillus 10^{3} 10⁶ 0.5 10 0.05

Ribose (g/L)

Contro

2. Microbial guilds - Predict competition

Competition for Resources

Predicting Response to 11 Metabolites*

SensitivitySpecificityAccuracyPrimary Target:54%83%79%† (increase)

Secondary Target 93% 65% 70% ↓ (decrease)

*Fructose, Galactose, Ribose, Trehalose, Xylose, Maltodextrin, Glutamate, Glutathione, Putrescine, Spermidine, Sulfate+Thiosulfate

Axenic vs. Community Growth

very hard to predict!

12 isolates metabolize ribose axenically

5 try to grow with ribose in the community

2 isolates succeed

Modifying composition (Probiotics)

✓ Adding metabolites (Prebiotics)

Experimental Setup

Soil

Soil (only SynCom Members Shown)

Glutathione

Glutathione

Targeted Interventions in Soil

Intervention in soil	Total number of tested conditions	Number of conditions in which <u>primary targets</u> increased	Number of conditions in which <u>secondary targets</u> decreased
Probiotic Single Strain	7	4/7 (57%)	4/4 (100%)
Prebiotic	7	6/7 (86%)	6/6 (100%)
Prebiotic + Probiotic Single Strain	10	8/10 (80%)	6/8 (75%)
Prebiotic + Probiotic Consortium	7	7/7 (100%)	7/7 (100%) UC San Dieg

synCom in Soil Soil

Guilds based on TE in soil

Guilds based on TE in soil

Soil – Substrate Addition

Soil – Substrate Addition

Log-Fold Change Under Many Conditions

Log-Fold Change Under Many Conditions

Non-Sugars

(Glutathione, putrescine, sulfate/thiosulfate)

Sugars

(Fructose, ribose, maltose, trehalose)

Competition versus Collaboration

81% of all interactions were explained by competition

>19% of all interactions are based on collaboration

Open Questions in Microbiome Research

Terrestrial

Aquatic

Host-Associated

...how do communities response to perturbations?

...can we predict outcomes?

Broadly Applicable Method

Complex

Complicated

MiND and Guilds in Human Stool Samples

Summary

Predicting Community Function

- ✓ Translational Efficiency
- ✓ Predicting Metabolic Niches and Guilds
- ✓ Identifing Interactions (Competition)
- Designing Interventions

Changing/Engineering Microbiomes

- ✓ Organism-Level, i.e. *Probiotics*
- ✓ Metabolite-Level, i.e. *Prebiotics*
- ✓ Scalable Technology, i.e. *Soil, Stool*
- ✓ Patent filed

Microbial Niche Determination (MiND) can predict outcomes in complex communities

Microbial Niche Determination (MiND) can predict outcomes in complex communities

MiND and guild association identifies intervention strategies to selectively alter the microbiome

TAKF HOMF

Acknowledgments

र UC San Diego

Zengler Lab – Pediatrics/Bioengineering

Anurag Passi Amber Hauw Asama Lekbua Blake Estefan Chloe Lieng Deepan Thiruppathy Diego Tec Campos Eli Haddad Grant Norton Gustavo Lastiri Juan Tibocha Bonilla Katie Short Manish Kumar Maxwell Neal Nadine Rosete Nathan Glonek Nidhi Parredy **Oriane Moyne** Peixuan Xie **Rodrigo Santibanez** Sherlyn Weng

Acknowledgments

🔫 UC San Diego

Zengler Lab – Pediatrics/Bioengineering

Anurag Passi Amber Hauw Asama Lekbua Blake Estefan Chloe Lieng Deepan Thiruppathy Diego Tec Campos Eli Haddad Grant Norton Gustavo Lastiri Juan Tibocha Bonilla Katie Short Manish Kumar Maxwell Neal Nadine Rosete Nathan Glonek Nidhi Parredy **Oriane Moyne** Peixuan Xie **Rodrigo Santibanez** Sherlyn Weng

Funding

ARMY RESEARCH OFFICE

CALIFORNIA DEPARTMENT OF FOOD & AGRICULTURE

Questions?

www.zenglerlab.com

