BIOTIC AND ABIOTIC STRESS DISTINCTLY DRIVE THE PHYLLOSPHERE MICROBIAL COMMUNITY STRUCTURE

RISHI BHANDARI

Ph.D. CANDIDATE

POTNIS LAB, ENTOMOLOGY AND PLANT PATHOLOGY

AUBURN UNIVERSITY, AUBURN AL

SEP 13, 2023

Table of contents

1. Introduction

Growth-defense trade-off

Climate change induced variability in microbiome

2. Climate change and microbial response

Ozone as an environmental stress affecting crop health

- 3. Knowledge gap and experimental design
- 4. Results
- 5. Summary
- 6. Inference from the study

Can plants grow and defend well at the same time?

Microbial communities play a diverse role in plant health

Dubey et. al. 2019

MICrobial ecology and functional diversity of natural nabitats

Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica

Michael Fürnkranz, Wolfgang Wanek, Andreas Richter, Guy Abell, Frank Rasche & Angela Sessitsch 🖂

The ISME Journal 2, 561–570 (2008) Cite this article

Role of Dominant Phyllosphere Bacteria with Plant Growth–Promoting Characteristics on Growth and Nutrition of Maize (*Zea mays* L.)

<u>Vahid Alah Jahandideh Mahjen Abadi, Mozhgan Sepehri</u> ⊠, <u>Hadi Asadi Rahmani, Mehdi Zarei,</u> <u>Abdolmajid Ronaghi, Seyed Mohsen Taghavi</u> & <u>Mahdieh Shamshiripour</u>

Journal of Soil Science and Plant Nutrition 20, 2348–2363 (2020) Cite this article

> Plant Biol (Stuttg). 2014 May;16(3):586-93. doi: 10.1111/plb.12082. Epub 2013 Aug 16.

Community structures of N2 -fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought

L Rico ¹, R Ogaya, J Terradas, J Peñuelas

Affiliations + expand PMID: 23952768 DOI: 10.1111/plb.12082

Bacterial Ice Nucleation: A Factor in Frost Injury to Plants 1 Steven E. Lindow, Deane C. Arny, Christen D. Upper

Plant Physiology, Volume 70, Issue 4, October 1982, Pages 1084–1089,

Climate change induce unpredictability in microbial community structure/function and disease outcome

Singh, B.K. et al. 2023

How would plants and associated microbes respond to climate change and emerging pathogens?

Tropospheric ozone levels is being increased around the globe

Wang et al. 2022

Tropospheric ozone is considered a major air pollutant having negative effects on plant growth and productivity.

(Photograph courtesy earthobservatory.nasa.gov; photo by Gerald Holmes)

Kim, M.S. et al., 2001,

Chameides et al., 1999

Experimental design

Experimental design

Methods and shotgun metagenomics workflow

Hypothesis

Presence of elevated O₃ will increase overall susceptibility of pepper to bacterial spot xanthomonads, even on the resistant cultivar. Phyllosphere microbial communities will show alterations in both taxonomic and functional profiles and altered seasonal dynamics in response to altered O_3 levels, regardless of the cultivars.

Establishment of **disease would disrupt seasonal dynamics** of the phyllosphere microbiome, and this effect will be stronger in the environments that support high disease pressure.

Elevated O₃ exacerbates bacterial spot disease severity on the resistant cultivar but has no effect on the susceptible cultivar

Elevated O₃ doesn't have the influence on *Xanthomonas* population in both the cultivars

The effects of elevated O₃ on disease outcomes are not fully explained by changes in microbiota density and abundance

Bacterial diversity and richness increases upon exposure to field conditions

End season

17

Elevated O₃ has little impact on microbial diversity and richness

Microbial community structure was significantly affected by inoculation and time of sampling

NMDS1

NMDS1

Elevated O₃ changes microbial community structure on resistant cultivars in the absence of pathogen

Summary: Influence of environment, pathogen and host resistance in microbial community structure

Phyllosphere microbial communities with different taxonomical compositions shows functional redundancy.

Summary: Influence of environment, pathogen and host resistance in microbial community function

Overall community Microbial functions enriched How does the biotic and abiotic function in both the cultivars stress influence the microbial association? Biosynthesis of amino acid Defense pathways GOOD DOING Microbial diversity in the Microbial diversity in the BUSINESS susceptible cultivar resistant cultivar WITH YOU! End End season Mid End End season Mid season compared to Influence of season compared to Carbohydrate metabolism seasonal Defense pathways succession on Exopolysaccharide pathways community $\bigcirc \bigcirc \downarrow \bigcirc \bigcirc \downarrow$ function in the 0 0 ambient environment, yet **β-oxidation** functional O₂ independent respiration resilience in the $\bigcirc \bigcirc \downarrow \bigcirc \bigcirc \downarrow$ **DNA** repair presence of Pathways against O₂ stress single or combined stress.

 $Source: WUR\ https://www.wur.nl/en/article/microbial-interactions-between-green-microalgae-neochloris-oleoabundans-and-hypothesised-symbionts.htm$

Purine nucleotide production and degradation

Ambient environment

Presence of pathogen

Elevated O₃

Combined stress

Microbial network analysis helps to explore co-occurrence patterns of the microbial communities

Source: CEPLAS

Modularity '

modularity have dense connections between the nodes within modules

Average path length 🖊

average number of steps which would be required to reach from one node to another

Positive edge percentage

proportion of positive edges in the network В

(F)

Abiotic stress destabilizes microbial network

Ambient environment

Elevated ozone

Positive edge %

Average Path length

Pathogen infection is associated with microbial communities showing positive and stable interactions

Average Path length

Ambient environment and control plants

Ambient environment and inoculated plants

Microbial network topology is altered under combined pathogen and ozone stress.

Ambient environment and control plants

Elevated ozone and inoculated plants

Overall summary

Take home message, inferences and future directions

The host defense is likely to be compromised in the face of climate change

Altered host defense in the altered environment?

Is the pathogen being more aggressive with the change in the environment? Loss of microbiota mediated protection?

External environment Light Humidity Water • CO₂ Circadian clock Soil nutrients Temperature Microbiome Internal Internal growth module defense module Auxin PRRs NLRs SA BR CK ET JA GA He Z. et. al. 2022

Altered interaction among the community members

Microbial interactions can be restored by adding SynCom to balance the growthdefense trade-off ??

Sandrini M. et al. 2022

Acknowledgement

Dr. Neha Potnis

Dr. Courtney Leisner

Dr. Alvaro Sanz-Saez

Potnis lab members

Amanpreet Kaur

Bijaya Subedi

Kylie Weis

Ivory Russel

Palash Ghosh

Sivakumar Ramamoorthy

Past lab member

Auston Holland

phyllosphere

OPEN

ARTICLE

www.nature.com/ismecomms

Check for updates

https://nehapotnis.wixsi te.com/potnislab/

@nehapotnis @hreeshee

Rishi Bhandari¹, Alvaro Sanz-Saez², Courtney P. Leisner³ and Neha Potnis 1^{12}

https://doi.org/10.1038/s43705-023-00232-w

Xanthomonas infection and ozone stress distinctly influence the

microbial community structure and interactions in the pepper

