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Can plants grow and defend well at the same time?
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Microbial communities play a diverse role in plant health
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Climate change induce unpredictability in microbial community structure/function
and disease outcome
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How would plants and associated microbes respond to climate change and emerging
pathogens?
Environment
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Tropospheric ozone levels is being increased around the globe
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Tropospheric ozone is considered a major air pollutant having negative effects on
plant growth and productivity.
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Model system: Xanthomonas sp. pathogenic in tomato and pepper (Bacterial leaf
spot pathogen)

Inoculated Control

Susceptible Resistant
(ECW) (PS 09979325)




Experimental design

Dip inoculation with Xanthomonas Inoculated
perforans suspension (106 CFU/ml )
amended with 0.0045% (vol/vol)
Silwet L-77

5-6 weeks old seedlings of
resistant and susceptible
pepper cultivars grown in

the greenhouse

43

l — —> Chamber 7-12 ‘ Susceptible cultivar
Control . Resistant cultivar
Control plants dip inoculated in ~ Both control and inoculated Each chamber had 12 plants, six
MgSO, buffer amended with seedlings were then resistant and six susceptible
0.0045% (volivol) Silwet L-77 transplanted into 10.5" pots cultivars arranged alternately
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Experimental design
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Methods and shotgun metagenomics workflow
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Presence of elevated
O; will increase
overall susceptibility
of pepper to bacterial
spot xanthomonads,
even on the resistant
cultivar.

Hypothesis

Phyllosphere microbial
communities will show
alterations in both
taxonomic and functional
profiles and altered
seasonal dynamics in
response to altered

O; levels, regardless of the
cultivars.

Establishment of disease
would disrupt seasonal
dynamics of the
phyllosphere microbiome,
and this effect will be
stronger 1n the environments
that support high disease
pressure.
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Elevated O; exacerbates bacterial spot disease severity on the resistant cultivar but
has no effect on the susceptible cultivar
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Xanthomonas abundance

Elevated O; doesn't have the influence on Xanthomonas population in both the
cultivars
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The effects of elevated O; on disease outcomes are not fully explained by changes in
microbiota density and abundance
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Bacterial diversity and richness increases upon exposure to field conditions
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Elevated O; has little impact on microbial diversity and richness
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Microbial community structure was significantly affected by inoculation and time of

sampling
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Elevated O; changes microbial community structure on resistant cultivars in the
absence of pathogen
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Summary: Influence of environment, pathogen and host resistance in microbial

community structure
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Phyllosphere microbial communities with different taxonomical compositions
shows functional redundancy.
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Summary: Influence of environment, pathogen and host resistance in microbial
community function
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Microbial network analysis helps to explore co-occurrence patterns of the
microbial communities
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Abiotic stress destabilizes microbial network
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Pathogen infection is associated with microbial communities showing positive and
stable interactions

Ambient environment and control plants
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Microbial network topology is altered under combined pathogen and ozone stress.

Ambient environment and control plants
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Take home message, inferences and future directions

The host defense is likely to be compromised in the face of climate change

Is the pathogen being more Loss of microbiota mediated
altered environment? aggressive with the change protection?
in the environment?
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Microbial interactions can be restored by adding SynCom to balance the growth-

Scion growth-defence trade-off

growth | defence 4 E growth 4 defence ¢

Rootstock growth-defence trade-off

growth* defence T i growth ? defence i

defense trade-off ??

SynCom adding

Richer and more biodiverse microbiome

e
I

PGP-traits ,/ L Vat)

Biofertilizers

priming state
Antimicrobial
activities

Sandrini M. et al. 2022

microbes-mediated

Balanced growth-defence
trade-off

30



Acknowledgement
Dr. Neha Potnis

Dr. Courtney Leisner

Dr. Alvaro Sanz-Saez

Potnis lab members

Amanpreet Kaur
Bijaya Subedi
Kylie Weis

Ivory Russel

Palash Ghosh

Sivakumar Ramamoorthy

FAR

aanNIFA
Eg

Past lab member

31

Auston Holland



PZINN
<171 I s M E www.nature.com/ismecomms https://nehapotnis.wixsi
X174

'k te.com/potnislab/

ARTICLE OPEN ) Check for updates
Xanthomonas infection and ozone stress distinctly influence the O httos://eithub.com/Potnislab/
microbial community structure and interactions in the pepper

phyllosphere
\V .
Rishi Bhandari', Alvaro Sanz-Saez?, Courtney P. Leisner® and Neha Potnis®'™ ‘ @ neha potn IS @ hreeshee

https://doi.org/10.1038/s43705-023-00232-w

32


https://nehapotnis.wixsite.com/potnislab/
https://nehapotnis.wixsite.com/potnislab/
https://github.com/Potnislab/
https://doi.org/10.1038/s43705-023-00232-w

