# **Contribution of Microbial Biostimulants to Improving Agricultural Productivity in Benin**



Dr. Nadège Adoukè AGBODJATO Soil Microbiology and Plant Biology University of N'Zérékoré







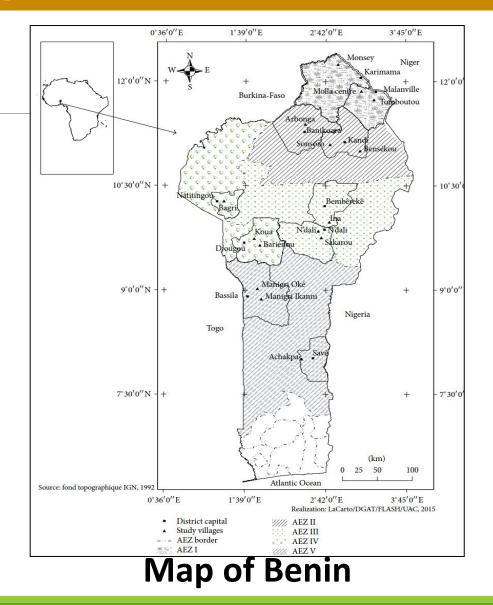
WEDNESDAY 5 FEBRUARY 2025 11:00 AM EST

# PLAN

> 1. Agricultural context and challenges in Benin

> 2. Biostimulants : Importance and Mechanisms of action

- 3. Case studies in Benin : the success of biostimulants in sustainable agriculture
- **4.** Conclusion




#### 1. Agriculture Context in Benin

Benin is a West African country covering an area of 114,760 km2 and with a population of 13.7 million (INSAE, 2019)

➤ A country with a predominantly rural population

Agriculture plays a crucial role in Benin's economy and society



# **Agricultural sector**

Plays a central role in economic and social growth

# Employs nearly 70% of the active population

Contributes nearly 75% of export earnings and 32% of GDP (Gross Interior Product) (INSAE, 2019)

A vital sector for guaranteeing food sovereignty and security

#### **Traditional agriculture**

- The majority of farmers in Benin use traditional farming methods
- Agriculture is rain-fed



#### **Economic importance**

• Agriculture plays a crucial role in Benin's economy, both in terms of employment and food security.



#### The main agricultural crops in Benin are: **Cashew nuts** Cotton Maize Sorghum/millet Food Cowpea Peanut crops Yam **Pineapple Oil palm** Cassava **Despite its importance, agriculture in**

**Benin faces a number of problems** 

#### **Environmental challenges**

• Agricultural activities can face a number of environmental challenges: Soil erosion, loss of biodiversity, Plant attack by pathogens, Crop contamination etc..

#### To increase crop yields

Many farmers **use mineral fertilizers**, which are indeed considered the most effective weapon

### But are not without

#### Adverse **health and environmental consequences**.

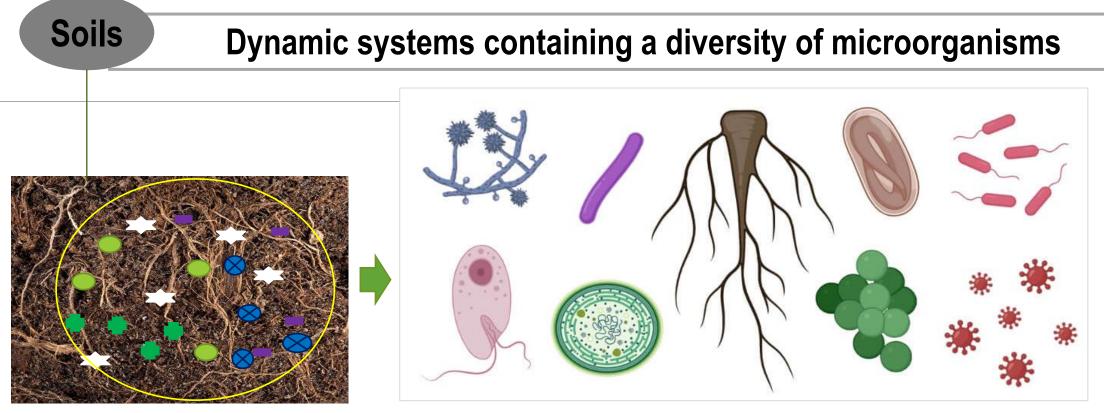




What's more, excessive use of these fertilizers and pesticides has negative repercussions on human and animal health, as well as on the environment:



**Contamination of agricultural products** 


Groundwater contamination





**Reduction in soil fertility** 

**Crop contamination** 



#### Bacteria, Fungi, Parasites, Viruses and Algae

Maintenance of the diversity of microorganisms

Soil sustainability

1

It is therefore imperative to move towards sustainable agriculture that reduces the use of chemical inputs.

One solution is the use of Biostimulants based on soil microorganisms and others bioproducts.







# 2. Biostimulants : Importance and Mechanisms of action

#### **Biostimulants...?**

Substances or microorganisms applied to plants or soil or as seed coatings Stimulate plants' natural processes, improving their ability to absorb nutrients

2

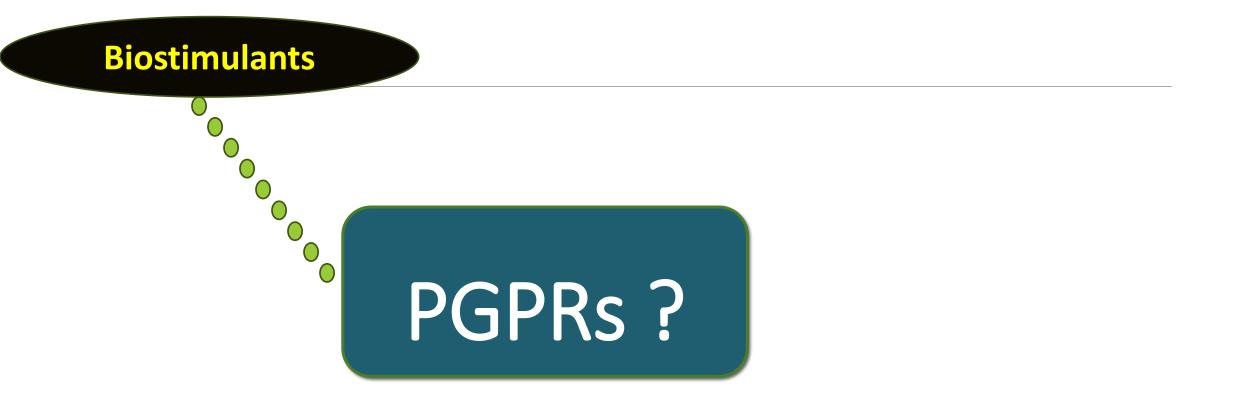
Improve crop productivity and resist environmental stress

3

**Biostimulants...?** 

Integration into sustainable agricultural practices

Biostimulants can be integrated into sustainable cropping systems, reducing the need for chemical fertilizers and other inputs.

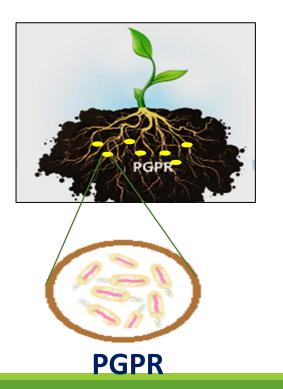



3

**Development of new formulations** 

#### **Farmer awareness and adoption**

Raising farmers' awareness of the benefits of biostimulants is essential to encourage their adoption and improve the sustainability of agriculture.

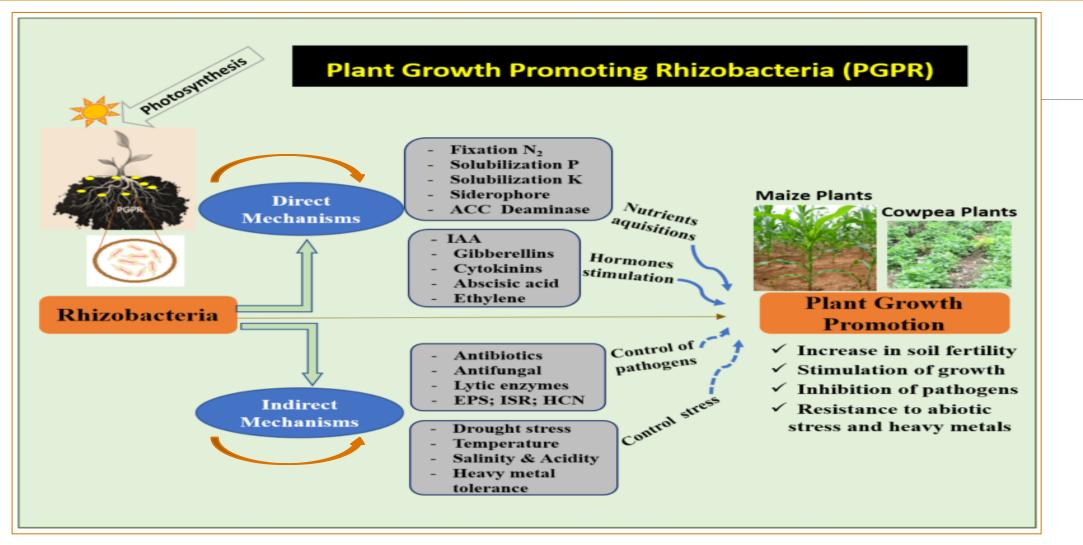



# **Mechanisms of action of PGPRs?**

#### Plant Growth Promoting Rhizobacteria (PGPR)

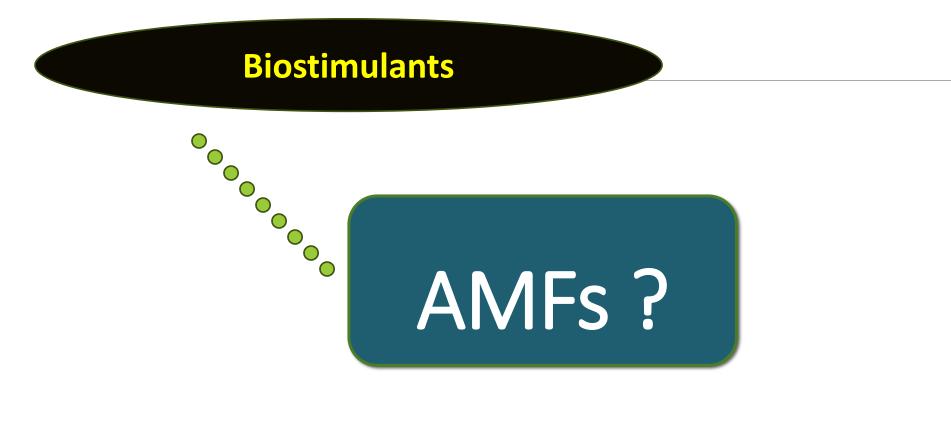
Rhizobacteria promote plant growth

Bacteria capable of colonizing plant roots, stimulating growth and increasing yields.




PGPR mechanisms of action fall into 02 categories :




✓ Direct Mechanisms✓ Indirect Mechanisms

# **Mechanisms of action of PGPRs?**



Mechanisms of action of PGPRs (Agbodjato et al., 2024)

# Mechanisms of action of AMFs?



# Mechanisms of action of AMF

≻AMF ⇒ Arbuscular Mycorrhizal Fungi

**Complex communications between plants, fungi and soil** 

AMFs form vesicles, arbuscules and hyphae both in roots and in the rhizosphere (Begum et al., 2019).

# **Mechanisms of action of AMF**

Plant-AMF Association Stress Tolerance **Regulation of** antioxidant The formation of a hyphal defense system to mitigate network between AMFs and oxidative stress roots increases the latter's **Regulation of:** access to a large volume of -ABA responsive gene. soil for crop growth. Soil Health -aquaporin gene. -transcription factor Soil moisture, texture and fertility improvement Improved Stress Tolerance and Enhanced Yield

Mechanisms of action of AMF (Khaliq et al., 2022)

Nutrient

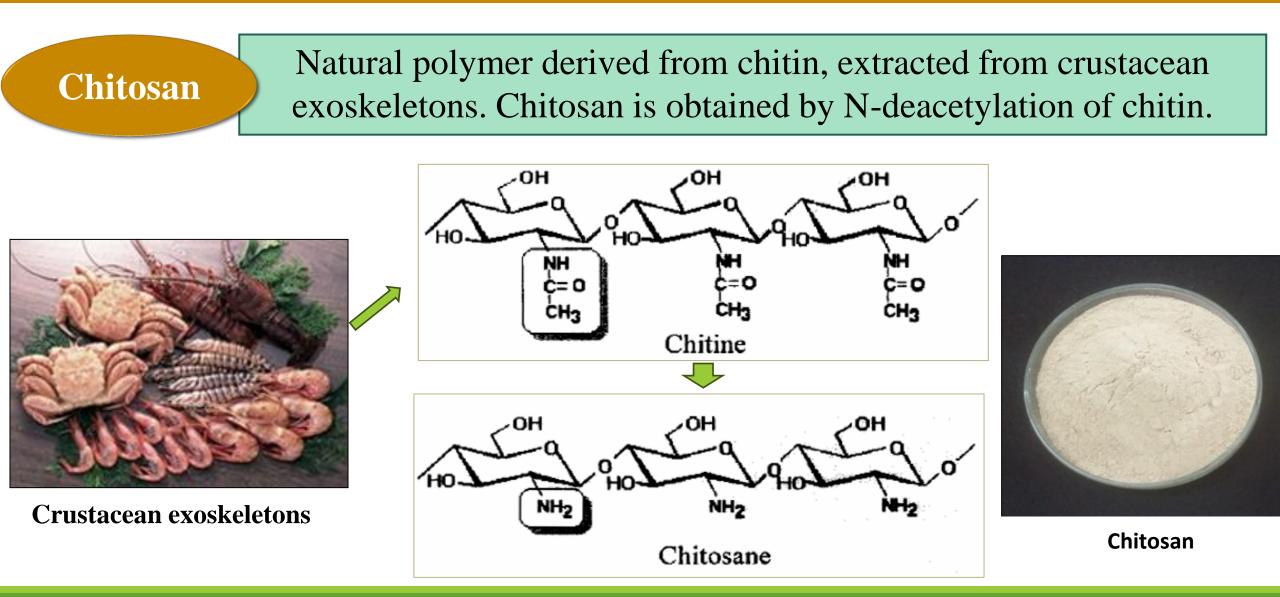
uptake

Specific

transporters

Translocation

from external environment to


internal by

modification of root morphology

# Mechanisms of action of Chitosan



# Mechanisms of action of Chitosan



# Mechanisms of action of Chitosan

No-toxic, biocompatible and biodegradable polysaccharide

Chitosan

Stimulate plants' innate ability to defend themselves against pathogens

As a biostimulator, improves germination, growth and yield.

# **Case studies...**



# 3. Case studies: the success of biostimulants in sustainable agriculture

## **Activities carried out on PGPRs**

# Production of Biostimulant based on the best PGPR strains in Benin

# **Activities carried out on PGPRs**

#### Isolation of rhizobacteria strains from Benin soils and characterization of their PGPR profiles

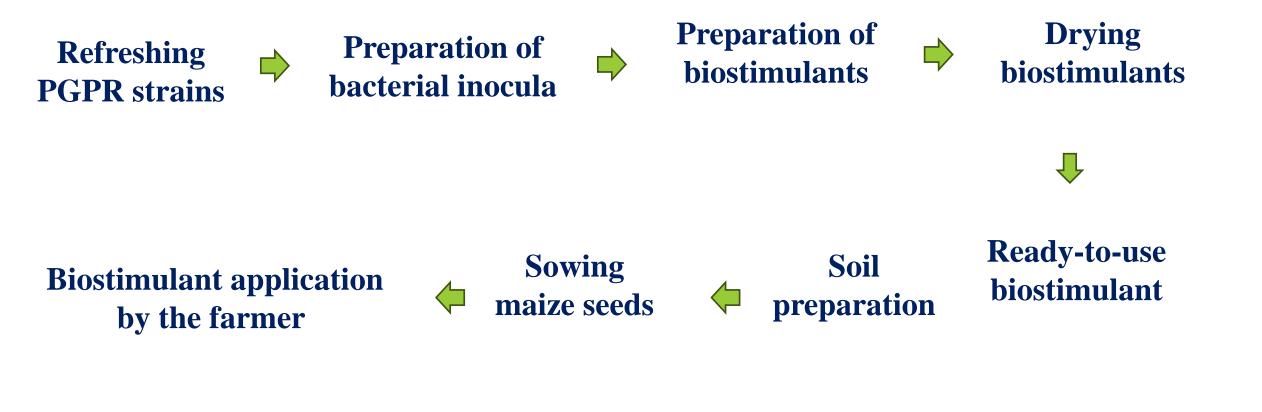
**Siderophore production** 

**Phosphate solubilization** 

Antagonism between rhizobacteria and pathogenic fungi

Production of ExoPolySaccharides(EPS)

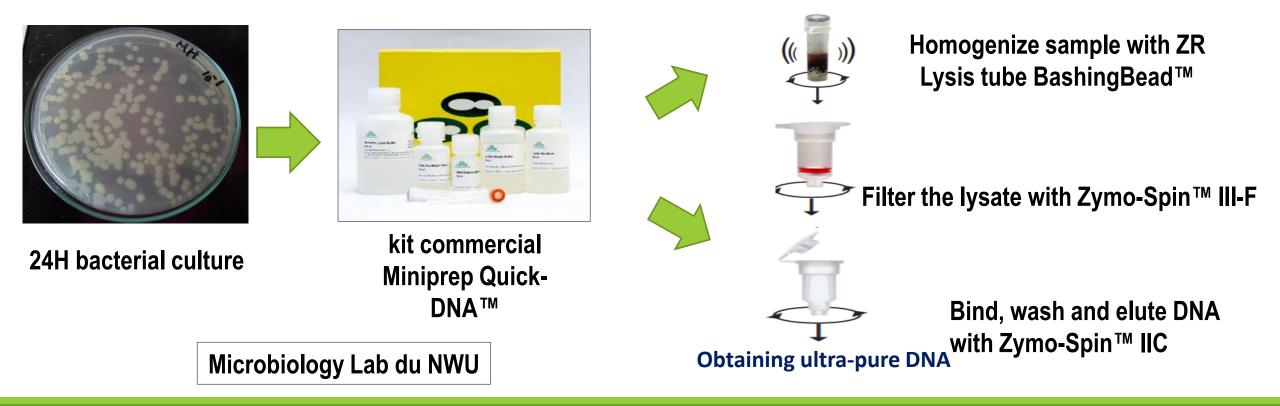
**Hydrogen cyanide production(HCN)** 


Production of indole acetic Acid (IAA)

**Protease production** 

Lipase production

# **Activities carried out PGPR**


Production of PGPR-based biostimulants and evaluation of their effects on maize growth and yield in farming conditions



# **Activities carried out on PGPRs**

#### > 1. Extraction of DNA from PGPR strains

Bacterial DNAs of the strains were extracted at NWU University (South -Africa) from a 24H culture using a commercial Miniprep Quick-DNA<sup>™</sup> kit following the manufacturer's instructions.



# **Activities carried out...**

#### > 2. Sequencing of DNA from PGPR strains

• DNA libraries were generated using a NEBNext® Ultra<sup>TM</sup> IIDNA Library Prep Kit with commercial supplier NOVOGEN Company in Singapour.

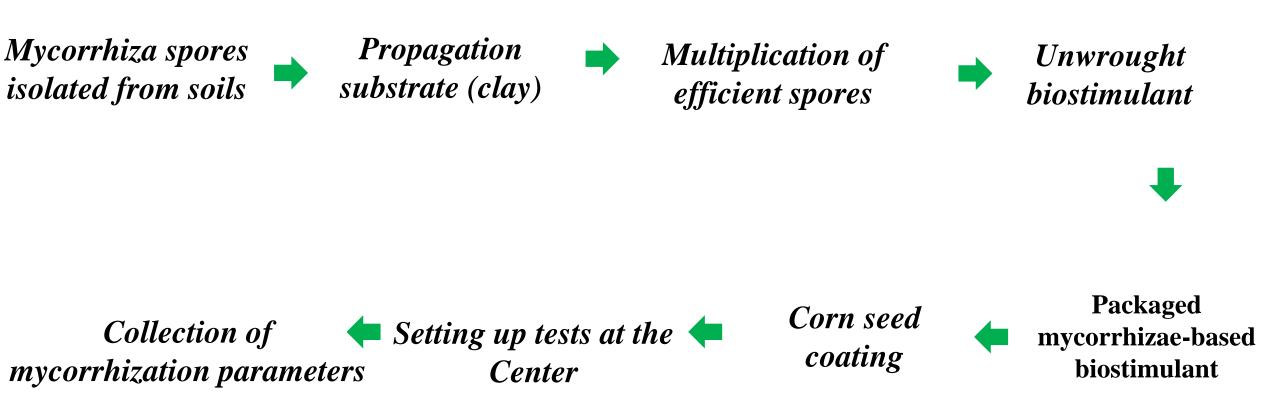
They were then sequenced with a NovaSeq PE150 sequencing strategy using the Illumina NovaSeq 6000 platform.

- Sequences were analyzed on the **KBase platform.**
- Removal of sequence adapters and low-quality reads with **Trimmomatic v0.36**
- Reads were moderately assembled with **SPAdes** v3.13.0 (Nurk et al., 2013).







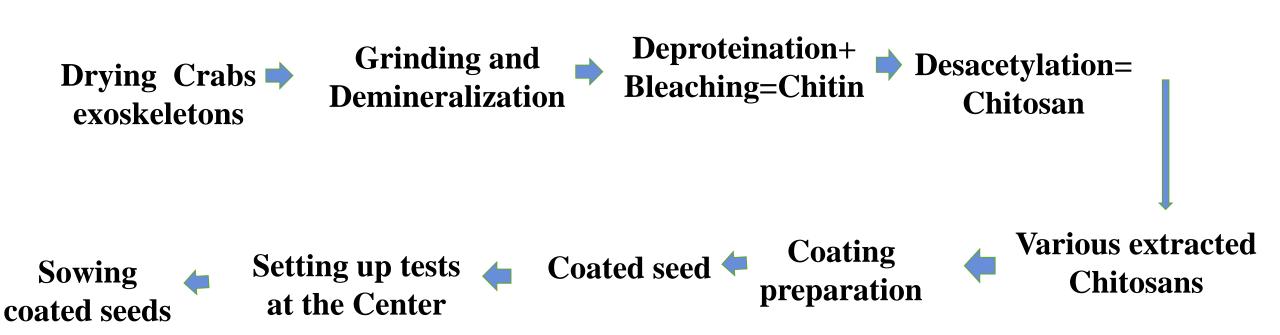



### **Activities carried out on CMAs**

# Production of Biostimulant based on the best AMF strains in Benin

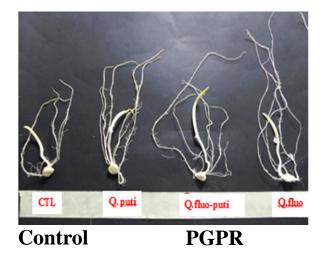
# **Activities carried out on CMAs**

Isolation of CMA spores and production of native CMA-based biostimulants for maize cultivation




# Activities carried out on Chitosan

Production of Chitosan-based biostimulant in Benin


# **Activities carried out on Chitosan**

Extraction of Chitosan from crab exoskeletons and production of Biostimulant for corn cultivation



# **Results obtained ....**

Some photos of the effects of the biostimulants PGPR, AMF and Chitosan in a controlled environment and in a farming environment.





Contol AMF



**PGPR** field



Hydroponic Test of PGPR

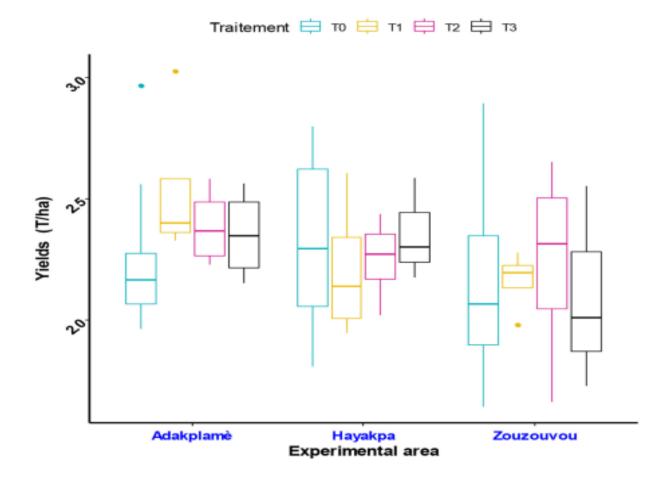




Control AMF



**PGPR field** + Chitosan

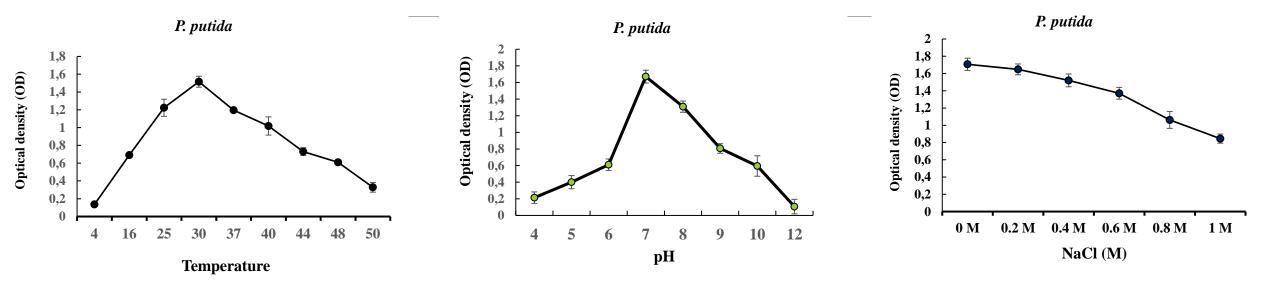



Control PGPR

- Isolation and identification of PGPR strains in rhizospheres of maize soils in Benin
  - Azospirillium lipoferum,
  - Pseudomonas fluorescens,
  - Pseudomonas putida

-Bacillus polymyxa, B. panthothenicus, B. anthracis, B. thuringiensis, B. circulans. -Pseudomonas cichorii, P. putida, P. syringae, -Serratia marcescens

Effects of formulated biostimulants on maize growth and yield in farming conditions




T0:100% NPK (agricultural practice); T1: Clay + P. putida + 50% NPK; T2: Peat + P. putida 50% NPK; T3:Clay + Peat + P. putida + ½ NPK

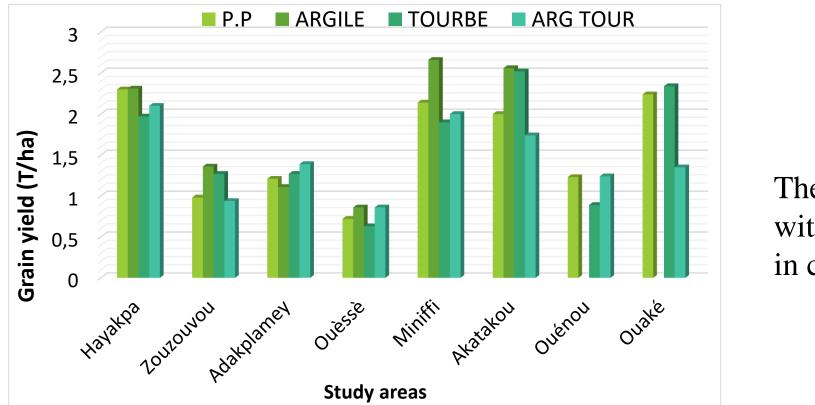
#### Biostimulant PGPR+50%NPK (T1)

induces the best yield, i.e. 15% compared to 100% NPK (T0) at Adakplamè (southern Benin).).

#### In Vitro Effect of PGPR Tolerance to Different Environmental Stress Conditions



Effect of Temperature, pH and NaCl Variation on the Growth of P. putida

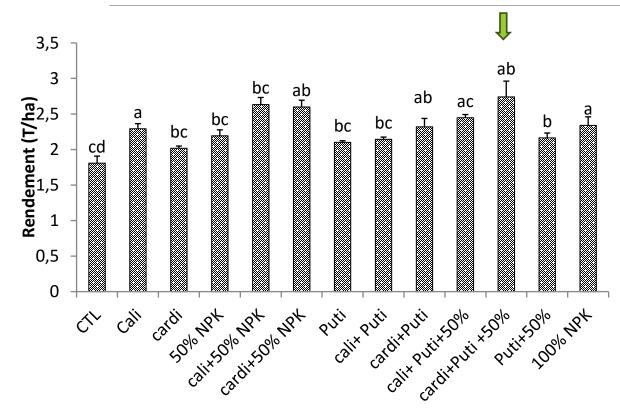

- *P. putida* reached its optimum growth at 30 °C but reduced from 40 °C. At extreme temperatures (4, 16, 48, 50 °C
- *P. putida* grew from pH 4 to pH 8
- *P. putida* was found to be salt tolerant at different concentrations (0.2 M to 1 M

<u>Table 1:</u> Whole Genome Sequencing characteristics of *B. cereus* ADO11, *S. maltophilia* NAA11, *A. pittii* LAM11 and *S. marcescens* NSA15 (Agbodjato et al., 2022)

| Strains / Parameter  | Bacillus           | Stenotrophomonas   | Acinetobacte <u>r</u> | Serratia           |
|----------------------|--------------------|--------------------|-----------------------|--------------------|
|                      | cereus ADO11       | maltophilia NAA11  | pittii LAM11          | marcescens NSA15   |
| Genome Size (pb)     | 4,476,462          | 4,731,402          | 4,080,875             | 4,959,744          |
| G+C (%)              | 35.4               | 66.42              | 38.8                  | 59.8               |
| Contigs              | 28                 | 141                | 89                    | 56                 |
| Genome Coverage      | 290.0x             | 198.0x             | 115.0x                | 135.0x             |
| N <sub>50</sub>      | 296,930            | 54,168             | 88,379                | 164,348            |
| L <sub>50</sub>      | 4                  | 25                 | 14                    | 11                 |
| Gene (total)         | 4616               | 4420               | 3977                  | 4731               |
| Protein              | 4467               | 4300               | 3771                  | 4629               |
| rRNA                 | 11                 | 1                  | 5                     | 4                  |
| tRNA                 | 37                 | 67                 | 58                    | 55                 |
| Other RNA            | 5                  | 4                  | 4                     | 12                 |
| Pseudo Gene          | 96                 | 48                 | 139                   | 33                 |
| BioProject number    | PRJNA750908        | PRJNA751730        | PRJNA751219           | PRJNA754119        |
| SRA accession number | <u>SRX11612109</u> | <u>SRX11634702</u> | <u>SRX11616698</u>    | <u>SRX11727062</u> |
| GenBank accession    | JAIRCN00000000.1.  | JAIUDP00000000.1.  | JAMQVB00000000.1      | JAMQIW00000000.1   |
| number               |                    |                    |                       |                    |

# **Some Results obtained : AMF....**

#### **Effects of AMF biostimulants on maize grain yields**




The best grain yields were obtained with the **AMF** formulated with clay in combination with 50% NPK.

Effect of AMF biostimulants on maize grain yield per treatment

# Some Results obtained: Chitosan with PGPR

Effects of chitosans produced from C. amnicola and C. armatum in combination with P. putida on maize yield on station



• Good yield performance in all treatments compared to control.

• Plants treated with the combination of Chitosan extracted from *C. armatum* + *P. putida*+50% NPK gave the best maize grain yields with an increase of 51.68%.

Variation in maize grain yield

#### VALORIZING PGPR RESULTS from 2011 to date

More than 40 scientific articles published and 02 technical data sheets

02 scientific articles and one technical data sheet in progress

**Many Research Projects** 

More than 15 posters, 04 exhibitions, 1 prize (4th prize for scientific innovation at UAC)



#### Publications

#### List of some publications

Hindawi Publishing Corporation Applied and Environmental Soil Science Volume 2015, Article ID 901656, 9 pages http://dx.doi.org/10.1155/2015/901656

#### **Research** Article

**Characterization of Potential Plant Growth** Promoting Rhizobacteria Isolated from Maize (Zea mays L.) in Central and Northern Benin (West Africa)

#### Nadège A. Agbodjato,<sup>1</sup> Pacôme A. Noumavo,<sup>1</sup> Farid Baba-Moussa,<sup>2</sup> Hafiz A. Salami,<sup>1</sup> Haziz Sina,<sup>1</sup> Alphonse Sèzan,<sup>3</sup> Honoré Bankolé,<sup>4</sup> Adolphe Adjanohoun,<sup>5</sup> and Lamine Baba-Moussa<sup>1</sup>

<sup>1</sup>Laboratoire de Biologie et de Typage Moléculaire en Microbiologie, Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, 05 BP 1604 Cotonou, Benin <sup>2</sup>Laboratoire de Microbiologie et de Technologie Alimentaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, 04 BP 1107 Cotonou, Benin <sup>3</sup>Laboratoire de Biomembrane et de Signalisation Cellulaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, 01 BP526 Abomev-Calavi, Benin <sup>4</sup>Section Hygiène des Eaux et Aliments, Laboratoire National de Santé Publique, 01 BP 418 Cotonou, Benin <sup>5</sup>Centre de Recherches Agricoles Sud, Institut National des Recherches Agricoles du Bénin, BP 03 Attogon, Benin

Correspondence should be addressed to Lamine Baba-Moussa; laminesaid@yahoo.fr

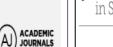
Received 5 April 2015; Accepted 21 July 2015

Academic Editor: Marco Trevisan

| Vol. 12(28), pp. 664-672, 28 July, 2018<br>DOI: 10.5897/AJMR2018.8916<br>Article Number: DEF5EF857997<br>ISSN: 1996-0808 |
|--------------------------------------------------------------------------------------------------------------------------|
| Copyright ©2018                                                                                                          |
| Author(s) retain the copyright of this of                                                                                |

Hindaw

aht of this article http://www.academiciournals.ora/AJMR


Full Length Research Paper

Biofertilising, plant-stimulating and biocontrol potentials of maize plant growth promoting rhizobacteria isolated in central and northern Benin

Nadège Adoukè Agbodjato<sup>1</sup>, Olaréwadjou Amogou<sup>1</sup>, Pacôme Agossou Noumavo<sup>1,2</sup>, Gustave Dagbénonbakin<sup>3</sup>, Hafiz Adio Salami<sup>1</sup>, Rachidath Karimou<sup>1</sup>, Abdel-Madjid Alladé<sup>1</sup>, Oyedele Adedayo<sup>4</sup>, Farid Baba-Moussa<sup>2</sup>, Adolphe Adjanohoun<sup>5</sup> and Lamine Saïd Baba-Moussa<sup>1</sup>

<sup>1</sup>Laboratoire de Biologie et de Typage Moléculaire en Microbiologie, Faculté des Sciences et Techniques, Université d'Abomev-Calavi, 05 BP 1604 Cotonou, Bénin, <sup>2</sup>Laboratoire de Microbiologie et des Technologies Alimentaires, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, 04 BP 1107 Cotonou, Bénin. <sup>3</sup>Centre de Recherches Agricoles d'Agonkanmey, Institut National des Recherches Agricoles du Bénin, Bénin. <sup>4</sup>Institute of Agricultural Research and Training, Moor plantation, Ibadan, Nigeria. <sup>5</sup>Centre de Recherches Agricoles Sud, Institut National des Recherches Agricoles du Bénin, BP 03 Attogon, Bénin.

Received 12 June, 2018; Accepted 19 July, 2018



African Journal of Microbiology Research

frontiers in Sustainable Food Systems

**ORIGINAL RESEARCH** published: 14 April 2021 doi: 10.3389/fsufs.2021.666718

**Efficacy of Biostimulants Formulated** With Pseudomonas putida and Clay, Peat, Clay-Peat Binders on Maize **Productivity in a Farming Environment in Southern Benin** 

Nadège Adoukè Agbodjato<sup>1,2</sup>, Marcel Yévèdo Adoko<sup>2</sup>, Olubukola Oluranti Babalola<sup>1\*</sup>, Olaréwadjou Amogou<sup>2</sup>, Farid T. Badé<sup>2</sup>, Pacôme A. Noumavo<sup>2,3</sup>, Adolphe Adjanohoun<sup>4</sup> OPEN ACCESS and Lamine Baba-Moussa<sup>2</sup>

Edited by:

#### Publications

#### List of some publications

Frontiers | Frontiers in Plant Science

TYPE Original Research PUBLISHED 12 December 2022 DOI 10.3389/fpls.2022.1064710



Microbiology <sup>®</sup> Resource Announcements



GENOME SEQUENCES

#### Draft Genome Sequences of Four Strains of Plant Growth-Promoting Bacteria Associated with Maize Rhizosphere

<sup>®</sup>Olubukola Oluranti Babalola,<sup>a</sup> <sup>®</sup>Nadège Adoukè Agbodjato,<sup>a,b</sup> <sup>®</sup>Ayansina Segun Ayangbenro,<sup>a</sup> Adolphe Adjanohoun,<sup>c</sup> <sup>®</sup>Lamine Baba-Moussa<sup>b</sup>

Pood Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
PLaboratoire de Biologie et de Typage Moléculaire en Microbiologie, Faculté des Sciences et Techiques, Université d'Abomey-Calavi, Calavi, Benin
Calavi, PLaboratoire des Recherches Agricoles du Bénin, Calavi, Benin

**ABSTRACT** This study presents the draft genome sequences of four strains of rhizobacteria, namely, *Bacillus cereus* ADO11, *Stenotrophomonas maltophilia* NAA11, *Acinetobacter pittii* LAM11, and *Serratia marcescens* NSA15, which were isolated from maize soils and have the ability to stimulate plant growth. The genome assembly sizes for the strains were 4,476,462 bp, 4,731,402 bp, 4,080,875 bp and 4,959,744 bp, respectively.

agronomy



#### Article

Use of Plant Growth Promoting Rhizobacteria in Combination with Chitosan on Maize Crop: Promising Prospects for Sustainable, Environmentally Friendly Agriculture and against Abiotic Stress

Nadège Adoukè Agbodjato <sup>1,2</sup>, Toussaint Mikpon <sup>2,3</sup>, Olubukola Oluranti Babalola <sup>1,\*</sup>, Durand Dah-Nouvlessounon <sup>2</sup>, Olaréwadjou Amogou <sup>2</sup>, Halfane Lehmane <sup>2</sup>, Marcel Yévèdo Adoko <sup>2</sup>, Adolphe Adjanohoun <sup>3</sup> and Lamine Baba-Moussa <sup>2</sup>

#### Check for updates

#### OPEN ACCESS

EDITED BY Waheed Akram, University of the Punjab, Pakistan

#### REVIEWED BY

Hakim Manghwar, Lushan Botanical Garden (CAS), China Mohamed Hafez, City of Scientific Research and Technological Applications, Egypt

#### \*CORRESPONDENCE

Lamine Baba-Moussa laminesaid@yahoo.fr

#### SPECIALTY SECTION

This article was submitted to Plant Symbiotic Interactions, a section of the journal Frontiers in Plant Science Effect of the application or coating of PGPR-based biostimulant on the growth, yield and nutritional status of maize in Benin

Marcel Yévèdo Adoko<sup>1</sup>, Agossou Damien Pacôme Noumavo<sup>1,2</sup>, Nadège Adoukè Agbodjato<sup>1</sup>, Olaréwadjou Amogou<sup>1</sup>, Hafiz Adéwalé Salami<sup>1</sup>, Ricardos Mèvognon Aguégué<sup>1</sup>, Nestor Ahoyo Adjovi<sup>3</sup>, Adolphe Adjanohoun<sup>3</sup> and Lamine Baba-Moussa<sup>1\*</sup>

#### Conclusion

The use of biostimulants based on PGPR, AMF and Chitosan An alternative for soil sustainability, reducing chemical fertilizers and improving crop productivity

We are open to collaborations aimed at promoting sustainable agriculture on the African continent.

Benin is also able to supply growers with biostimulants to promote sustainable agriculture...

# Acknowledgements

#### LBTMM team headed by **Prof. Lamine BABA-MOUSSA**

(University of Abomey-Calavi/Benin)



Financial support for institutions





#### Laboratory teams from South Africa and Italy









The End





Dr. Nadège Adoukè AGBODJATO Soil Microbiology and Plant Biology nadegeagbodjato@yahoo.fr